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Deciphering protein evolution and fitness
landscapes with latent space models
Xinqiang Ding 1, Zhengting Zou 2 & Charles L. Brooks III 1,3,4*

Protein sequences contain rich information about protein evolution, fitness landscapes, and

stability. Here we investigate how latent space models trained using variational auto-

encoders can infer these properties from sequences. Using both simulated and real

sequences, we show that the low dimensional latent space representation of sequences,

calculated using the encoder model, captures both evolutionary and ancestral relationships

between sequences. Together with experimental fitness data and Gaussian process regres-

sion, the latent space representation also enables learning the protein fitness landscape in a

continuous low dimensional space. Moreover, the model is also useful in predicting protein

mutational stability landscapes and quantifying the importance of stability in shaping protein

evolution. Overall, we illustrate that the latent space models learned using variational auto-

encoders provide a mechanism for exploration of the rich data contained in protein

sequences regarding evolution, fitness and stability and hence are well-suited to help guide

protein engineering efforts.
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Advances in nucleic acid sequencing technology have yiel-
ded a large amount of protein sequence data as deposited
in protein sequence databases such as UniProt1 and

Pfam2. For many protein families, thousands of sequences from
different species are available and these sequences can be aligned
to construct multiple sequence alignments (MSAs)2. These
naturally occurring diverse protein sequences in an MSA,
belonging to a protein family but functioning in a diverse set of
environments, are the result of mutation and selection occurring
during the process of protein evolution. The selection in evolution
favors sequences that have high fitness and filters out sequences
that do not fold correctly or have low fitness. Therefore, it is
expected that the distribution of sequences observed in extant
species in an MSA carries information about a protein family’s
properties, such as evolution3, fitness4–6, structure3,7–13, and
stability3,14–17. Computational and theoretical methods that are
able to infer these protein properties using the sequence data have
proven to be useful tools for studying proteins3–6,14,17.

The current widely used method for inferring protein evolution
with sequences is phylogeny reconstruction18. In phylogeny
reconstruction, sequences are assumed to be generated by an
amino acid substitution model and an unobserved phylogenetic
tree, which represents the phylogenetic relationship between
sequences. Given sequences, the major task in phylogeny recon-
struction is to infer the phylogenetic tree using either maximum
likelihood methods or Bayesian approaches18,19. Multiple algo-
rithms for this purpose have been developed and are widely used
in a number of applications20–24. Because of the discrete nature of
trees and the vast number of possible tree structures for even just
a few hundred sequences, searching for the true maximum like-
lihood tree is very challenging and computationally intensive.
Most phylogeny reconstruction methods use heuristic approaches
and do not scale to tens of thousands of sequences24. To infer
phylogenetic relationships between tens of thousands of sequen-
ces, faster phylogeny reconstruction methods such as the Fas-
tTree24 have been developed. A common assumption made in
phylogeny reconstruction methods is that, when sequences evolve
based on the phylogenetic tree, each amino acid position in the
protein evolves independently of other positions18. However,
significant evidence suggests that high-order epistasis between
two or more positions exists and plays an important role in
shaping evolutionary trajectories25. These high-order epistasis
effects are not taken into account by current phylogeny recon-
struction methods.

A recent advance aimed at capturing epistasis between protein
positions is the development of direct coupling analysis
(DCA)4,7,26–32. In contrast to phylogeny reconstruction, DCA
explicitly models second-order epistasis between pairs of posi-
tions by an energy-based probabilistic model. In the probabilistic
model, epistasis is modeled as an interaction energy term between
pairs of positions. Multiple studies have shown that the second-
order epistasis inferred using DCA is highly correlated with
physical side chain–side chain contacts in protein structures,
which makes DCA a useful tool to predict protein residue contact
maps from sequences4,7,11–13,26–32. However, because DCA
methods model the distribution of sequences directly instead of
assuming that there is an underlying latent process generating the
sequences as in phylogeny reconstruction, DCA methods cannot
infer phylogenetic relationships between sequences. Moreover,
because DCA methods aim to distinguish correlations caused by
protein structure or function constraints from that caused by
phylogeny, DCA methods implicitly reduce phylogenetic effects
as suggested in ref. 33. In addition, the approach used by DCA to
model second-order epistasis cannot be readily extended to model
higher-order epistasis because the number of parameters in DCA
models increases exponentially with the order of epistasis

accounted for in the model. A DCA model with third-order
epistasis would have too many parameters to fit given current
sequence availability.

In this paper, we explore the application of latent space gen-
erative models34,35 on protein sequences to address limitations of
both phylogeny reconstruction and DCA methods. Similarly to
phylogeny reconstruction, the employed latent space model also
assumes that protein sequences are generated from an underlying
probabilistic generative process. However, the latent variables are
continuous variables instead of tree structures. In contrast to
DCA, the latent space model can theoretically model high-order
epistasis without exponentially increasing the number of para-
meters, because the epistasis effect is modeled through latent
variables. Learning the latent space model with a large amount of
data is challenging and it has been an intensive research topic in
both statistical inference and machine learning36. Thanks to
recent advances in stochastic variational inference such as the
variational auto-encoder (VAE) approach34,35, continuous latent
space models can be readily learned for hundreds of thousands of
sequences. All latent space models in this study were learned
using the VAE approach.

With examples of both natural protein families and simulated
sequences, we show that the continuous latent space model
trained with VAEs can work beyond the limitations of previous
methods. The latent space variable can capture evolutionary
relationships, including ancestral relationships between sequen-
ces. In addition to modeling evolution, the latent space model also
provides a continuous low-dimensional space in which protein
fitness landscapes can be modeled. Moreover, we also find that
the sequence probability assigned by the model is useful in pre-
dicting protein stability change upon mutations. The correlation
between sequence probability change and protein stability change
upon mutations provides an estimate of the importance of pro-
tein stability in protein evolution. Our findings suggest that, with
the continuing increase in the amount of protein sequence data,
latent space generative models trained with VAEs will be useful
tools for both the study and engineering of proteins.

Learning latent space models of protein families using VAEs
has also been explored by several other groups37–39, but the focus
of applications presented in this study is different from that in
previous studies. For instance, one of our findings that the latent
space model trained with VAEs can capture phylogenetic rela-
tionships has not been investigated before. Modeling protein
fitness landscapes in the latent space is also absent in previous
studies37–39. A detailed comparison of our approach with pre-
vious studies is included in the Discussion section.

Results
Latent space models of protein MSAs. The protein sequences in
a protein family’s MSA are the result of mutation and selection
occurring during the process of protein evolution. Therefore, it is
expected that the distribution of sequences observed in extant
species in an MSA carries information about the protein family’s
properties, such as its evolution3. It is through modeling the
sequence distribution of a protein family that latent space models
infer evolution and other properties. In latent space models, a
protein sequence S ¼ ðs1; s2; :::; sLÞ from an MSA with L positions
is represented as a binary 21 ´ L matrix X for which Xij ¼ 1 if
sj ¼ i and otherwise Xij ¼ 0 (Fig. 1). (sj corresponds to the amino
acid type at the jth position of the protein and amino acid types
are labeled using numbers from 0 to 20, where 0 represents a gap
in the MSA and numbers 1 to 20 represent the 20 natural amino
acid types.)

In addition to the variables X representing sequences, latent
space models also include latent variables Z and the generative
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process pθðXjZÞ. Latent variables Z can be viewed as a code for X.
Latent space models define the joint distribution of X and Z as
pθðX;ZÞ ¼ pθðZÞpθðXjZÞ, where θ represents parameters of
the joint distribution. The joint distribution pθðX;ZÞ ¼
pθðZÞpθðXjZÞ implies a probabilistic generative process for
ðX;ZÞ: the latent variables Z are sampled from a prior
distribution pθðZÞ first and then the sequence variables X are
sampled from the conditional distribution pθðXjZÞ given Z. The
conditional distribution pθðXjZÞ can also be viewed as a decoder
that converts codes Z into protein sequences X. Although protein
sequences X are discrete random variables, the latent space
variables Z are modeled as continuous random variables.

Given the observed sequence data for variables X, learning the
parameters θ that describe the generative process using maximum
likelihood approaches is challenging and has been an intensive
research topic in machine learning34,36. One reason for the
difficulty is that the marginal probability of the observed
sequences X,

pθðXÞ ¼
Z

pθðX;ZÞdZ; ð1Þ

is not analytically tractable and is expensive to compute when the
conditional distribution pθðXjZÞ is complex. The other reason for
the difficulty is that when the conditional distribution pθðXjZÞ is
complex, such as parameterized by an artificial neural network,
the posterior distribution pθðZjXÞ becomes analytically intract-
able. Moreover, it can also be difficult to efficiently draw
independent samples from pθðZjXÞ34, which makes the
expectation-maximization algorithm40,41 unsuitable for maximiz-
ing the marginal probability pθðXÞ. One effective way to learn the
parameters θ is to use an approximation method called
variational inference36,42,43. In variational inference, to remedy
the difficulty with the posterior distribution pθðZjXÞ, a family of
approximate distributions, qϕðZjXÞ, parameterized by ϕ, is
introduced to approximate the posterior distribution pθðZjXÞ.
Instead of optimizing the marginal probability of observed
sequences pθðXÞ, variational inference optimizes an alternative
objective function called the evidence lower bound objective
function (ELBO)34,36, which is defined as

ELBOðθ;ϕÞ ¼
X
Z

qϕðZjXÞlog pθðXjZÞ �
X
Z

qϕðZjXÞlog
qϕðZjXÞ
pθðZÞ

;

ð2Þ
where the first term represents the model’s reconstruction power
from the latent space representation and the second term is
the Kullback–Leibler divergence between the approximation

distribution qϕðZjXÞ and the prior distribution pθðZÞ. It can be
easily proved that the ELBO objective function is a lower bound
of the log likelihood function, i.e., ELBOðθ;ϕÞ � log pθðXÞ36,42.

Two recent advances that enable variational inference
approaches to learn latent space models for a large amount of
data are stochastic variational inference44 and VAEs34,35. VAEs
combine stochastic variational inference with a reparameteriza-
tion strategy for the amortized inference model qϕðZjXÞ34,35.
Latent space models learned with VAEs have been widely used in
several machine learning problems, such as image and natural
language processing, and produce state-of-the-art results34,45,46.
In this study, we utilize the VAE approach to learn latent space
models of MSAs of protein families. Specifically, the prior
distribution of Z, pθðZÞ, is chosen to be a multivariable normal
distribution with a mean of zero and an identity covariance. The
encoder conditional distribution qϕðZjXÞ and the decoder
conditional distribution pθðXjZÞ are parameterized using artificial
neural networks with one hidden layer (Fig. 1), similarly to the
model used in the original VAE paper34.

Latent space representations capture phylogeny. The encoder
qϕðZjXÞ, trained on the MSA of a protein family, can be used to
embed sequences in a low-dimensional continuous latent space,
Z, i.e., each sequence from the MSA is projected into a point in
the latent space. Embedding sequences in a low-dimensional
continuous space can be useful for several reasons. The low (2 or
3) dimensionality makes it straightforward to visualize sequence
distributions and sequence relationships. The continuity of the
space enables us to apply operations such as interpolation and
extrapolation, which are best suited to continuous variables, to
the family of sequences, and this, in turn, can allow us to explore
new sequences through decoding the relationships implied by
the MSA.

To see how sequences from such an MSA are distributed in the
latent space, we trained latent space models using VAEs on MSAs
from three protein families: fibronectin type III domain (Pfam
accession id: PF00041), cytochrome P450 (PF00067), and
staphylococcal nuclease (PF00565). The number of unique
sequences used for training the latent space models was 46,498,
31,062, and 7448, respectively. For visualization purposes, a two-
dimensional latent space is used. Utilizing the learned encoder
qϕðZjXÞ, sequences from MSAs are projected into the two-
dimensional latent space Z for all three protein families (Fig. 2a,
b, and Supplementary Fig. 1A). Results from Fig. 2a, b and
Supplementary Fig. 1A show that, in the latent space, sequences
are not distributed randomly. Their distributions have a star
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structure with multiple spikes, each of which points from the
center toward the outside along a specific direction. As a negative
control, the same latent space model is trained on an MSA
consisting of 10,000 random sequences sampled from the
equilibrium distribution of the LG evolutionary model47. In
contrast to sequences from the above three natural protein
families, these random sequences are randomly distributed in the
latent space and the star structure is not observed (Fig. 2c). The
difference between random sequences and sequences from a
protein family’s MSA is that the latter are evolutionarily related.
Therefore, the star structure observed in the latent space
representation arises from evolutionary relationships between
protein sequences in an MSA.

In evolution biology, the evolutionary relationship between
sequences is often represented using a phylogenetic tree. To
explore whether and how the latent space representation is
related to phylogenetic relationships between sequences, we need
to know the phylogenetic tree structures for sequences from the
natural protein families (Fig. 2a, b and Supplementary Fig. 1A).
Unfortunately, the phylogenetic tree structures cannot be known
exactly for natural protein families. Therefore, to further explore
whether and how the latent space representation captures
phylogenetic relationships between sequences, we compared
latent space representations with phylogenetic trees under three
different scenarios: (1) simulated MSAs based on a random
phylogenetic tree, (2) simulated MSAs based on realistic
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Fig. 2 Latent space representation of sequences captures phylogenetic relationships between sequences. a, b Latent space representation of sequences
from the multiple sequence alignment of the fibronectin type III domain and the cytochrome P450 family, respectively. c Latent space representation of
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phylogenetic trees of natural protein families, and (3) natural
protein MSAs with inferred phylogenetic trees. These three
scenarios will be henceforth referred to as the first, second, and
third scenarios, respectively. In the first and second scenarios with
simulated protein sequences, the amino acid preferences of each
protein site is independent from other sites, whereas in the third
scenario with natural protein sequences, the amino acid
preferences of each site include both site-specific effects and co-
evolution effects between sites.

In the first scenario, a simulated MSA was generated by
neutrally evolving a random protein sequence with 100 amino
acids on a simulated phylogenetic tree48 with 10,000 leaf nodes
and combining sequences from all the leaf nodes (Fig. 2d). Thus
the phylogenetic relationships between sequences in this
simulated MSA are known based on the phylogenetic tree
defined in the simulation. As with the three natural protein
families, the latent space representation of the simulated
sequences has a similar star structure with multiple separate
spikes (Fig. 2e). Although sequences in both Fig. 2c, e are from
simulations, the star structure only appears in Fig. 2e, where
sequences are simulated based a phylogenetic tree. This again
supports the idea that the star structure is derived from
evolutionary relationships encoded in the tree structure. To
compare the latent space star structure with the phylogenetic tree,
sequences are grouped together if they are in the same branch at a
reference evolutionary time point (α and β in Fig. 2d) based on
the phylogenetic tree. Sequences in the same group have the same
color in their latent space representation (Fig. 2e). Sequences with
the same color are observed to have their latent space
representations in the same spike or multiple adjacent spikes
(Fig. 2e). The multiple adjacent spikes occupied by the same
group of sequences represent more fine-grained phylogenetic
relationships between sequences. These more fine-grained
phylogenetic relationships can be recovered by changing the
reference time point to β to group the sequences (Fig. 2f).

In the second scenario, simulated MSAs were generated by
evolving sequences on realistic phylogenetic trees of natural
protein families. Seven realistic phylogenetic trees from the
benchmark set of the FastTree study49 were used (http://www.
microbesonline.org/fasttree/downloads/aa5K_new.tar.gz). Each of
the seven realistic phylogenetic trees has 5000 leaf nodes. They
were constructed using PhyML50 based on alignments of seven
protein families from the Clusters of Orthologous Groups (COG)
database. MSAs with 5000 sequences and 100 amino acids were
simulated based on these realistic phylogenetic trees. As in the
first scenario, the latent space representations of simulated
sequences based on realistic phylogenetic trees also have star
structures with multiple separate spikes (Supplementary Figs. 2
and 3). Because the phylogenetic trees underlying the simulations
are known, we can also group sequences based on their
evolutionary relationship by choosing an evolutionary distance
threshold. As in the first scenario, we also observe that sequences
belonging to the same group are clustered together in one spike or
multiple adjacent spikes (Supplementary Figs. 2 and 3).

In the third scenario, approximate phylogenetic trees for the
three protein families (fibronectin type III domain, cytochrome
P450, and staphylococcal nuclease) were inferred using FastTree
249. Then the sequences were grouped based on inferred
phylogenetic trees. As shown in Fig. 2g–i and Supplementary
Fig. 1B, real protein sequences from the same group are also
embedded closely in the latent space, either in one spike or
multiple adjacent spikes.

In summary, under all three different scenarios, the spatial
organization of the latent space representation captures features
of the phylogenetic relationship between sequences from an MSA
of a protein family. To quantify the extent to which phylogenetic

relationships between sequences can be captured by their latent
space representations and how this changes with respect to the
dimension of the latent space, the following analysis was
conducted in the first scenario. Using the latent space
representation, sequences are hierarchically clustered51. The
Euclidean distance in the latent space was used as distance
between sequences and the Ward’s minimum variance method51

was used as distance between clusters. Hierarchical clustering
builds a tree structure of the sequences with all the sequences as
its leaf nodes. Given a tree structure with sequences as its leaf
nodes, sequences can be clustered at different resolutions by
cutting the tree at different locations. For example, cutting the
tree in Fig. 2d at the α and β positions will generate clustering of
sequences at two different resolutions, i.e., ((A,B), (C,D), (E))
with three clusters and ((A), (B), (C), (D), (E)) with five clusters.
Because the underlying phylogenetic tree for the simulated MSAs
is known in the first scenario, the true clustering of sequences at
different resolutions is known based on the phylogenetic tree.
Therefore, we can use the agreement between the true clustering
and the hierarchical clustering result, which is based on latent
space representations, to quantify how well latent space
representations capture phylogenetic relationships. The agree-
ment is calculated for clustering at different resolutions and is
quantified using the widely used clustering comparison metric,
the adjusted mutual information (AMI)52. To compare with
traditional phylogenetic reconstruction methods, we also calcu-
lated the AMI between the true clustering and the clustering
results based on the inferred phylogenetic tree using the FastTree
249. Results of ten independent repeating experiments are shown
in Supplementary Fig. 4. The performance of the clustering based
on latent space representation increases when the dimension of
latent space increases from 2 and becomes flat before the
dimension increases to 20. Compared with FastTree 2, the
clustering based on latent space representations usually has better
performance at low clustering resolution, i.e., when the number of
clusters is relatively small (less than a few hundreds of clusters for
10,000 sequences). At high clustering resolution, the performance
of FastTree 2 is better than the clustering based on latent space
representations. Therefore, compared with FastTree 2, the latent
space representation is better at capturing low-resolution
phylogenetic relationships and is worse at capturing high-
resolution phylogenetic relationships. However, we note that
FastTree 2 uses more prior information than do latent space
models, such as the amino acid evolutional model and an out-of-
group sequence, which is used for rooting the inferred
phylogenetic tree. Neither of these is needed in learning latent
space models. In addition, using more intricate metrics than
Euclidean distance and other clustering methods might further
improve the clustering performance of latent space models, which
is the topic of future studies.

Because the dimension of the latent space is much smaller than
that of the original sequence space, the VAE encoder can be
viewed as a dimension reduction method for protein sequences.
To test whether other dimension reduction methods can capture
phylogenetic relationships between sequences as does the latent
space model, we applied two widely used dimensional reduction
methods, principal component analysis (PCA)53 and t-SNE54, to
the same set of simulated sequences from Fig. 2e and embedded
these sequences in the corresponding two-dimensional space
(Supplementary Fig. 5). Sequences in Supplementary Fig. 5 are
colored similarly as in Fig. 2e. In PCA, the first two components
can only explain 3% of the variance observed in the original
sequences and sequences belonging to different phylogenetic tree
branches are overlapped with each other (Supplementary Fig. 5A).
For t-SNE, although sequences belonging to different phyloge-
netic tree branches are not overlapped in the embedding space,
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they are not well separated, i.e., sequences from different branches
are clustered together (Supplementary Fig. 5B). In addition,
sequences from the same branch are separated into small clusters
that are far apart in the embedding space (Supplementary
Fig. 5B). Therefore, the phylogenetic relationships captured by
the latent space model cannot be obtained or are more obscured
using either PCA or t-SNE.

Ancestral relationships present in latent space models. Simi-
larly to the manner that branches in phylogenetic trees share a
common root node, spikes in latent space star structures share a
common point near the origin of the latent space. This similarity

is first supported by the observation that latent space repre-
sentations of root node sequences tend to be near the origin of the
latent space under all three different scenarios (Fig. 3b, e, g, h). To
quantify the robustness of this observation and to examine how
close root node sequence positions are to the origin, we con-
ducted the following independent iterated calculation to estimate
the uncertainty of the root node sequence position under the
three scenarios explored above.

In the first scenario, the calculation was repeated 2000 times. In
each repeat, a random phylogenetic tree with 10,000 leaf nodes
was sampled and used to simulate an MSA with 100 amino acids.
Then a latent space model was trained on the simulated MSA
with the VAE. Sequences from both the root node and all leaf
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acids. It is the same tree as in Fig. 2d. Here the evolutionary trace from the root node to the leaf node A is highlighted as bold lines. Nodes along the
highlighted evolutionary trace are colored based on the evolutionary distance from the root node using the color bar shown in b. b Latent space
representation of four representative leaf node sequences, labeled as plus signs, and their ancestral sequences, labeled as dots. Sequences are colored
based on their evolutionary distances from the root node. The sequence of the root node sits around the origin in the latent space. As the sequence evolves
from the root node to a leaf node, its latent space representation moves from the origin toward the surroundings along a direction. The moving direction,
labeled as a dashed arrow line for the right most leaf node, is calculated as the first component direction using principal component analysis. c The
distribution of the root node sequence position in the latent space estimated using 2000 repeats. d As shown in b, evolutionary distances of sequences are
correlated with their positions along the first component direction in the latent space. The corresponding Pearson correlation coefficient can be calculated
for each leaf node (see Supplementary Fig. 6A for the right most leaf node in b). Here we show the distribution of Pearson correlation coefficients of all leaf
node sequences. e, f Results on simulated MSAs based on the realistic phylogenetic tree of COG642: e A similar plot as b for the COG642 family. f A
similar plot as c for the COG642 family. g, h Similar plots as b for the fibronectin type III domain (g) and the cytochrome P450 family (h), respectively. i A
similar plot as d for the fibronectin type III domain family.
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nodes were projected into the latent space with the learned
encoder of the VAE. The overall range of leaf node sequence
positions is from −6.5 to 6.5 along both z1 and z2. Figure 3c
shows the empirical distribution of the root node sequence’s
position in the latent space estimated using the 2000 repeats
stated above. The mean of the empirical distribution is
ð0:01;�0:02Þ. The variances along z1 and z2 are 0:52 and 0:47,
respectively. The distributions of distances from the origin for the
root sequences and the sequences in the alignments (sequence on
the leaf nodes) are plotted in Supplementary Fig. 7. As shown in
Supplementary Fig. 8, similar results regarding the position of the
root node sequence are also observed for simulations with
heterotachy, where the substitution rate of each site changes over
time. Therefore, on average in the first scenario, the root node
sequence’s position in latent space is around the origin with a
standard deviation of about 0:7. In the second scenario, a similar
calculation was conducted for each COG protein family as in the
first scenario, except that the same realistic phylogenetic tree of
the COG protein family was used across repeats. Results are
shown in Fig. 3f and Supplementary Figs. 9 and 10. For all seven
COG protein families, the overall range of leaf node sequence
positions is from −6.5 to 6.5 and the means of empirical
distributions of root node sequences’ positions are also close to
the origin (Fig. 3f and Supplementary Figs. 9 and 10). The
standard deviation is about 0:7 for three of COG protein families
and about 0:45 for the other four COG protein families. In the
third scenario, the inferred phylogenetic tree and sequences were
fixed in each repeat and the latent space model was independently
trained. For all three natural protein families, the mean of the root
node sequence’s position is also close to origin (Supplementary
Fig. 11). The standard deviations are 0.17, 1.01, and 1.40 for
fibronectin type III, cytochrome P450, and staphylococcal
nuclease protein family, respectively (Supplementary Fig. 11).
The standard deviation is inversely correlated with the number of
unique sequences used to train the latent space model.

Furthermore, to visualize how a sequence’s representation
changes in latent space as the sequence evolves from the root
node to a leaf node, we projected both leaf node sequences and
their corresponding ancestral sequences into the latent space.
Figure 3b shows the latent space representation of four example
leaf node sequences and their ancestral sequences colored based
on their evolutionary distance. We observed that, as sequences
evolve from the root node to a leaf node, their positions in the
latent space move from near the origin toward the outside along a
direction. For a leaf node sequence and its corresponding
ancestral sequences, the primary direction of motion is calculated
as the first component direction using PCA (Fig. 3b). It is
observed that a sequence’s distance from the origin along the
moving direction in the latent space is highly correlated with the
sequence’s evolutionary distance from the root node sequence
(The Pearson correlation coefficient calculated using the right
most leaf node sequence in Fig. 3b is 0.98 as shown in
Supplementary Fig. 6A.). This correlation suggests that as
sequences evolve from the root node toward leaf nodes in the
phylogenetic tree, their latent space representations move from
the origin of the latent space toward the outside along specific
directions (Fig. 3b). This pattern holds for most of the leaf node
sequences and their corresponding ancestral sequences (Fig. 3d).
Similar results were also observed in the second and third
scenarios (Fig. 3e, g–i and Supplementary Figs. 6, 9, and 10).

Because the prior distribution pθðZÞ is symmetric with respect
to rotation of the latent space and the regularization with
Frobenius norm is symmetric with respect to the rotation of
weights, the ELBO objective function (Eq. (2)) is symmetric to the
rotation of mapping between the latent space and the hidden
layer in the encoder model when the mapping between the latent

space and the hidden layer in the decoder model is simulta-
neously inversely rotated. Therefore, rotating the latent space
representation, calculated with the encoder model learned by
optimizing the ELBO (Eq. (2)), by an arbitrary angle would yield
an equally good encoder model in terms of the ELBO value.
Consistent with this rotational symmetry, the star structure of
sequences in latent space capturing the phylogenetic relationship
is also invariant with respect to the rotation of latent space. The
rotational symmetry of the latent space representation is also
consistent to and closely related to the observation that, as a
sequence evolves, its latent space representation moves from the
origin toward the outside along a spike.

Navigating protein fitness landscapes in latent space. The
protein fitness here refers to protein properties contributing to
the normal functioning of a protein, not the typical organismal
fitness concept used in evolution biology. A protein’s fitness
landscape is a map from the protein’s sequence to the protein’s
fitness, such as the protein’s stability and activity, among a host of
other properties. Knowing a protein’s fitness landscape can
greatly assist in studying and engineering proteins with altered
properties. A protein’s fitness landscape can also be viewed as a
fitness function in a high-dimensional discrete space of sequen-
ces. Because of the high dimensionality and discreteness of this
sequence space, and the effects of epistasis between different
protein positions, it has been difficult for protein researchers to
characterize protein fitness landscapes25. As only a relatively
small number of sequences can be synthesized and have experi-
mentally measured fitness values, a common problem facing
researchers is, given the fitness values for a small collection of
sequences from a protein family, how does one predict the fitness
value of a new sequence from the same protein family or design a
new sequence, which will have a desired fitness value.

Here we examine the use of a semi-supervised learning
framework utilizing the latent space representation to learn
protein fitness landscapes using both protein sequence data and
experimental fitness data. Although fitness values are usually
known for only a small subset of sequences from a protein family,
we often have access to a large number of homologous sequences
from the same protein family. These sequences represent
functional proteins from species living in different environments.
The distribution of these sequences is shaped by evolutionary
selection. Therefore, we expect that the distribution of these
sequences contains information about the relationship between
sequence and fitness. To utilize this information, with a large
number of sequences from a protein family, we can model the
distribution of sequences by learning a latent space model for the
protein family. The resulting latent space model trained using
VAEs provides us with a sequence encoder and a sequence
decoder. With the sequence encoder, sequences are first
embedded into a low-dimensional continuous latent space. Then
the fitness landscape is modeled in the latent space with
experimental fitness data. With an estimated fitness landscape
in the latent space, we can predict the fitness value of a new
sequence using its latent space representation. In addition, we can
also design new sequences with desired fitness values by choosing
points in the latent space based on the fitness landscape and
converting these points into sequences using the decoder. To test
this framework, we applied it to the cytochrome P450 protein
family (PF00067)55–57.

The cytochrome P450 protein family was chosen to test our
framework because both experimental fitness data and a large
number of sequences are available for this protein family. The
Arnold group made a library of 6561 chimeric cytochrome
P450 sequences by recombining three cytochrome P450s
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(CYP102A1, CYP102A2, CYP102A3) at seven crossover loca-
tions55 (Supplementary Fig. 12) and measured T50 values (the
temperature at which 50% of the protein is inactivated
irreversibly after 10 min) for 278 sequences (Supplementary
Table 1 and Supplementary Data 1)55–57. In addition to these
experimental T50 fitness data, the cytochrome P450 family has
>31K unique homologous sequences in its MSA from the Pfam
database2.

For visualization purposes, we first trained a latent space model
with a two-dimensional latent space. Embedding the 31K
sequences from its MSA (Fig. 4a) shows that the latent space
representation of these sequences has a similar star structure as
observed in Fig. 2e (Fig. 4a is the same figure as Fig. 2b. It is
repeated here to be compared with Fig. 4b.). Comparing the latent
space representation of sequences from the MSA (Fig. 4a) with
that of chimeric sequences (Fig. 4b), we can see that the 6561
chimeric sequences, made by all possible recombinations of 3
proteins at 7 crossover locations, only occupy a small fraction of
latent space available for the protein family. This suggests that
most of the sequence space of cytochrome P450 is not covered by
these chimeric sequences. Therefore, the two-dimensional latent
space representation, though simple, is useful to estimate how
much sequence space has been covered by a set of sequences. In
addition, it can also potentially guide designing sequences from
the unexplored sequence space by converting points in the
unexplored latent space region into sequences using the VAE
decoder.

Embedding the sequences that have T50 data into the two-
dimensional latent space and coloring the sequences based on
their fitness values provide a way to visualize the fitness landscape
(Fig. 4c). As the fitness landscape is not necessarily linear,

Gaussian processes (GPs) are used to fit a continuous fitness
surface using the two-dimensional latent space representation as
features and using the radial basis function (RBF) kernel with
Euclidean distance. The 278 sequences with T50 experimental
data are randomly separated into a training set of 222 sequences
and a testing set of 56 sequences (Supplementary Table 1). Based
on 10-fold cross-validation on the training set, just using the two-
dimensional latent space representation of sequences, which have
466 amino acids, the GP model predicts the T50 values for the
training set with a Pearson correlation coefficient of 0:80 ± 0:06
and a MAD (mean absolute deviation) of 3:1 ± 0:4 °C (Fig. 4d).
For the testing set, the Pearson correlation coefficient is 0.84 and
the MAD is 2.9 °C (Fig. 4e).

As the method is not restricted to two-dimensional latent
spaces, models with latent spaces of different dimensionality
combined with GPs may also be used to predict the T50
experimental data. Models with a latent space of dimensionality
of 10, 20, 30, 40, and 50 were tested. Their performance on test set
is shown in Supplementary Fig. 13. Based on 10-fold cross-
validation, the model with a 20-dimensional latent space works
the best, yielding a Pearson correlation coefficient of 0:97 ± 0:02
and a MAD of 1:2 ± 0:2 °C on the training set (Supplementary
Fig. 14). On the testing set, the Pearson correlation coefficient is
0.95 and the MAD is 1.7 °C (Fig. 4f).

We note that GPs have been used before to learn the T50 fitness
landscape of cytochrome P450 either employing sequences as
features with a structure based kernel function56 or using
embedding representations58. In the study56 using a structure
based kernel function, the Pearson correlation coefficient is 0.95
and 0.82 for two sets of testing sequences, respectively, and the
MAD is 1.4 and 2.6 °C, respectively. Although our proposed
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method is comparable to previous methods56,58 in terms of
prediction accuracy, our method has important differences and
advantages compared to previous methods. One difference is the
embedding method. The embedding method used in this study is
the VAE encoder learned by modeling the sequence distribution
of the protein family. Therefore, it utilizes information specific to
the protein family. In contrast, the embedding method proposed
in ref. 58 is a generic doc2vec embedding method, which is learned
by pooling sequences from many protein families together and
viewing all protein sequences equally. Another advantage of our
method is that points in the embedding space, i.e., the latent
space, can be converted into sequences using the VAE decoder.
Therefore, the transformation between sequence space and
embedding space is a two-way transformation, instead of one
way as in ref. 58. This enables our approach to be used to propose
new sequences for experimental testing based on the fitness
landscape in the latent space.

Protein stability shapes evolution. With a protein family’s MSA
as training data, latent space models trained using VAEs learn the
joint distribution of latent space variables Z and sequence vari-
ables X: pθðX;ZÞ. After learning a latent space model, a marginal
probability pθðXÞ can be calculated for each sequence X with L
positions as pθðXÞ ¼

R
pθðX;ZÞdZ. The marginal probability of a

sequence X, pθðXÞ, measures how likely it is that the given
sequence X belongs to the protein family, i.e., how similar the
given sequence is to the sequences from the protein family’s MSA.
Because the protein family’s MSA are results of selection in
protein evolution, sequences with higher probability of belonging
to the protein family’s MSA are expected to have better adapta-
tion under selection pressures. Selection pressures for protein
evolution may include stability, enzyme activity, drug resistance,
or other properties. It can also be a mixture of different selection
pressures. Although different protein families might be under
different sets of selection pressures in evolution, a common
selection pressure shared by many structured protein families is

protein stability. Therefore, protein stability is one of the multiple
forces in shaping protein evolution and is expected to have an
effect in shaping protein family sequence distribution.

One way to quantify the importance of stability in shaping
protein evolution processes is calculating the correlation between
stability and probabilities of protein sequences. If the evolution of
a protein family is largely driven by stability, more stable
sequences are more likely to be selected, i.e., have higher
probability. To calculate the correlation between a protein
sequence’s probability assigned by latent space models and the
sequence’s stability, we utilized models learned from the two
protein families: fibronectin type III domain and staphylococcal
nuclease. These two protein families were used because there are
both experimental data on stability change upon mutations59 and
a large number of sequences in their MSAs in the Pfam database2.
Because the experimental data are protein stability change
between sequences that are different by one amino acid instead
of the stability of an individual sequence, correlation is calculated
between protein sequence stability change upon mutations and the
change of probabilities assigned by the latent space model. To be
comparable with experimental folding free energies, probabilities
of sequences, pθðXÞ, are transformed into unitless free energies by
ΔGVAE(X) = �log pθ(X), which will be called VAE free energies
henceforth. The change of probabilities between sequence X and
X0 is quantified by the change of VAE free energies, which is
calculated as ΔΔGVAE ¼ ΔGVAEðX0Þ � ΔGVAEðXÞ.

The Pearson’s correlation coefficients between the experimen-
tal stability change and the VAE free energy change for
fibronectin type III domain and staphylococcal nuclease are
0.81 and 0.52, respectively (Fig. 5a, b and Supplementary Table 2).
The corresponding Spearman’s rank correlation coefficients are
0.85 and 0.50, respectively. We note that, although the stability
change of sequences correlates with their VAE free energy
change, the correlation is not perfect, which supports the idea that
thermal stability is only one part of the forces that drive protein
evolution. For the two protein families studied here, the
correlations are different, which shows that the importance of
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thermal stability in shaping protein evolution varies among
different protein families. In addition to latent space models,
similar analysis as in Fig. 5a, b is conducted using sequence
profile and DCA methods. The results from the latent space
models are comparable to those from both methods in terms of
Spearman’s rank correlation coefficients (Fig. 5c, d).

Although protein evolution processes are only partially shaped
by protein thermal stability, the correlation between protein
stability change upon single-site mutations and free energy
change calculated using latent space models still makes the latent
space model a useful tool to predict protein stability change upon
single-site mutations. The similar performance of all the three
methods (Fig. 5c, d) implies that the effect of single-site
mutations on protein stability can be captured as well by the
simple sequence profile method as the more complicated DCA
and latent space models, although the sequence profile ignores the
dependency between protein positions. Because both DCA and
latent space models are designed to capture dependency between
protein positions, the advantage of DCA and latent space models
over sequence profile might become more obvious when
modeling the effect of multiple-site mutations on protein stability
change, which will be further investigated in future studies.

Discussion
Using both simulated and experimental data, we have demon-
strated that latent space models, trained using VAEs and with
information contained within MSAs of protein families, can
capture phylogenetic relationships including ancestral relation-
ships between sequences, help navigate protein fitness landscapes,
and predict protein stability change upon single-site mutations.
We note that our conclusions are robust to reasonable changes in
the architecture of the artificial neural networks used in both
encoder and decoder models. Setting the number of hidden units
from 100 to 150 and 200 or changing the number of hidden layers
from 1 to 2 does not substantially change the results (Supple-
mentary Fig. 15). The star structure of sequences in latent space is
still observed and the recapitulation of phylogenetic relationships
between sequences persists.

The comparison between the phylogenetic tree structure and
the latent space representation of sequences demonstrates that the
latent space representation encodes similar phylogenetic rela-
tionships between sequences as does the phylogenetic tree. Phy-
logenetically close sequences are clustered spatially together as
spikes in the latent space. In addition, as a sequence evolves, its
latent space representation moves from the origin toward the
outside along a spike. Quantitative comparison with the phylo-
geny reconstruction software FastTree 2 shows that the latent
space representation is better at capturing low-resolution phylo-
genetic relationships and does not capture high-resolution phy-
logenetic relationships as well as FastTree 2. This could be
because of the difference between the approximate-maximum-
likelihood method implemented in FastTree 2 and our latent
space models. The state-of-the-art phylogenetic inference meth-
ods, such as maximum likelihood methods, typically involve
explicit mechanistic modeling of the sequence evolution process
in nature. Specifically, each amino acid site is independently
modeled and contributes to the likelihood function. Such mod-
eling can be consistently powerful when divergence among
sequences is relatively short. However, given long evolution time,
multiple substitutions can happen at the same site, and mean-
while identical but independent substitutions can happen on
different branches in the tree. Such sequence convergence can
muffle the phylogenetic signals mentioned above in a large and
deep phylogeny, confusing the resolution of deep branches by
likelihood methods. On the contrary, latent space models

consider the entire protein sequence as a whole, potentially more
resistant to such loss of single-site phylogenetic patterns. Hence,
latent space models can be better at capturing global structures in
the sequence distribution, while some details of phylogenetic
relationship might be lost in the embedding. Apart from the
difference in capturing phylogenetic relationships, compared with
traditional phylogenetic trees, latent space models do not require
choosing a specific evolutionary model. Moreover, latent space
models can work with a much larger number of sequences
(hundreds of thousands of sequences or more with the compu-
tational cost increasing linearly with the number of sequences)
than phylogeny reconstruction, because it does not require the
tree structure search. Therefore, latent space models and phylo-
geny reconstruction methods are complementary and a mixture
model of both phylogenetic trees and latent space models trained
with VAEs might provide the best of both approaches for
studying protein evolution.

When experimental data on protein fitness is available for a
subset of sequences, latent space models can also help learn fit-
ness landscapes with the low-dimensional continuous latent space
representation of sequences. With an estimated fitness landscape
in the latent space and the two-way transformation between the
latent space and the sequence space, the latent space models can
not only predict fitness values of new sequences but also help
design new candidate sequences with desired fitness for experi-
mental synthesis and testing.

With the advance of sequencing technology, the amount of
protein sequence data that are available to train latent space
models is increasing rapidly. Moreover, recent deep mutational
scanning experiments are generating large-scale data sets of the
relationship between protein sequences and function60. With this
increasing amount of both protein sequence and fitness data, the
latent space model will be a useful tool to learn information about
protein evolution, fitness landscapes, and stability and provide
insights into the engineering of proteins with modified properties.

Finally, we note that several other groups have also explored
the use of latent space models on protein sequences37–39. In both
refs. 37 and 39, the major focus is predicting mutation effects using
the latent space model probability. It is similar to the part of our
work on predicting protein stability change upon mutations and
both yield a similar result, that the prediction from the latent
space model is slightly better than the sequence profile (inde-
pendent) model and DCA. It was argued in ref. 37 that the slightly
better performance of the latent space model over DCA is because
the latent space model can capture higher-order epistasis. How-
ever, compared with DCA, more domain-specific knowledge and
engineering efforts were applied to the latent space model, such as
the structured parameterization of the network motivated by
biological priors and learning an ensemble of latent space models
with a Bayesian approach. This domain-specific knowledge and
ensemble-based prediction could also contribute to the better
performance of the latent space model. As mentioned in ref. 37,
the largest improvement of the latent space model’s performance
seemed to result from the use of variational Bayes to learn dis-
tributions over weights of the network. Without the domain-
specific knowledge and ensemble-based prediction, results in
ref. 39 seemed to imply that the latent space model is not better
than DCA in predicting effects of mutations when the number of
sequences is small and is slightly better when the number of
sequences is large. Similar to ref. 39, domain-specific knowledge
and ensemble-based prediction was not used in this study. The
simpler latent space model with fewer built-in assumptions used
in this study could provide a more objective test of the nature of
the latent space model learned using VAEs. Our findings suggest
that the latent space model mostly captures the phylogenetic
relationships/correlations via the latent space representation,
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which was not investigated in previous studies. Although the
work in ref. 38 also used latent space models trained with VAEs,
its main focus was to reduce the initial sequence search space
when designing new protein sequences that have specific metal-
binding sites or a structure topology. The other unique focus of
our work is learning the protein fitness landscape in the latent
space, which is not present in previous studies37–39.

Methods
Processing and weighting sequences in MSAs. Before being used as training
data for learning latent space models, natural protein sequences in MSAs are
processed to remove positions at which too many sequences have gaps and
sequences with too many gaps. The processing procedure is as the following: (i)
positions at which the query sequence has gaps are removed; (ii) sequences with the
number of gaps >20% of the total length of the query sequence are removed; (iii)
positions at which >20% of sequences have gaps are removed again; (iv) duplicated
sequences are removed.

To reduce redundancy and emphasize diversity, sequences in a protein MSA are
weighted. Weighting sequences can also reduce the bias in the distribution of
species present in the MSA because some species’ genomes are more likely to have
been sequenced than others. Although there are more complex weighting methods
that reduce the influence of phylogeny27,61,62, here we use the simple but effective
position-based sequence weights63 as follows. Let us represent an MSA with N
sequences and L positions as fsnj : n ¼ 1:::N; j ¼ 1:::Lg, where snj represents the
amino acid type of the nth sequence at the jth position. In the position-based
sequence weighting method63, the weight of a sequence is a sum of weights of the
sequences’ positions. To calculate the weights of sequences, we first calculate a
weight matrix fwn

j : n ¼ 1:::N; j ¼ 1:::Lg, where wn
j is the weight of the nth

sequence contributed by its jth position. wn
j is calculated as

wn
j ¼ 1

Cj
´

1
Cn
j
; ð3Þ

where Cj is the number of unique amino acid types at the jth position of the MSA
and Cn

j is the number of sequences in the MSA that has the same amino acid
type at the jth position as the nth sequence. Then the weight of the nth sequence
is the sum of its position weights, i.e., wn ¼PL

j¼1w
n
j . Finally, the weights are

renormalized as ewn ¼ wn=
PN

i¼1w
i such that the sum of the normalized weights ewn

is one.
The above sequence processing and weighting procedure is only applied to

MSAs of natural protein families. For a simulated MSA, all its sequences and
positions are used and sequences are assigned with the same weight. Weights of
sequences are taken into account in learning all the models presented in this study
including latent space models, sequence profiles, and DCA.

Inferring phylogenetic trees and ancestral sequences. Because the three natural
protein families (fibronectin type III, cytochrome P450, and staphylococcal
nuclease) have a large number of sequences in their MSAs, their phylogenetic trees
were inferred using the software FastTree224 with the option -lg for using the LG
substitution model47 and the option -gamma for rescaling evolutionary lengths to
optimize the Gamma20 likelihood. All three inferred phylogenetic trees are rooted
using out-group rooting. Based on the phylogenetic trees inferred by FastTree2,
ancestral sequences were inferred using RAxML v8.222 with the option -m
PROTGAMMALG to also use the LG substitution model and Gamma model of rate
heterogeneity.

Learning latent space models with VAEs. The prior distribution of Z, pθðZÞ, is
an m-dimensional Gaussian distribution with mean at the origin and variance
initiated as the identity matrix. The decoder model pθðXjZÞ is parameterized
using a fully connected artificial neural network with one hidden layer as H ¼
tanhðWð1ÞZþ bð1ÞÞ and pθðXjZÞ ¼ softmaxðWð2ÞHþ bð2ÞÞ, where the parameters
θ include the weights fWð1Þ;Wð2Þg and the biases fbð1Þ; bð2Þg. The encoder model
qϕðZjXÞ is chosen to be an m-dimensional Gaussian distribution Nðμ;ΣÞ, where Σ
is a diagonal matrix with diagonal elements of σ2 ¼ ðσ21; σ22; :::; σ2mÞ. The mean μ
and the variance σ2 are parameterized using an artificial neural network with one
hidden layer as H ¼ tanhðWð3ÞX þ bð3ÞÞ, μ ¼ Wð4ÞHþ bð4Þ, and
log σ2 ¼ Wð5ÞHþ bð5Þ . The parameters ϕ for the encoder model qϕðZjXÞ include
the weights fWð3Þ;Wð4Þ;Wð5Þg and the biases fbð3Þ; bð4Þ; bð5Þg. The hidden layer is
chosen to have 100 hidden units in both the encoder and the decoder models.

The weights of sequences in a protein MSA are calculated using the position-
based sequence weighting63 shown above. Given weighted protein sequences, the
parameters of both encoder and decoder models are simultaneously learned by
optimizing the ELBO function34. To reduce overfitting, a regularization term of

γ �P5
i¼1k WðiÞ k2F is added to the objective ELBOðθ;ϕÞ, where γ is called the

weight decay factor and k WðiÞkF is the Frobenius norm of weight matrix WðiÞ .

The gradient of ELBO plus the regularization term with respect to the model
parameters is calculated using the backpropagation algorithm64 and the parameters
are optimized using the Adam optimizer65. The weight decay factor γ is selected
from the set of values {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} using 5-fold
cross-validation (using 10-fold cross-validation in the case of cytochrome P450s).
In the cross-validation, models trained with different weight decay factors are
evaluated based on the marginal probability assigned by the model on the held-out
sequences (based on the Pearson correlation coefficient in the case of cytochrome
P450s).

Calculating the marginal probability. Given a sequence X, the marginal prob-
ability, pθðXÞ, is equal to the integral

R
pθðX;ZÞdZ, which is calculated using

importance sampling:

pθðXÞ ¼
Z

pθðX;ZÞdZ ¼
Z

qϕðZjXÞ
pθðX;ZÞ
qϕðZjXÞ

dZ

¼ E
Z�qϕðZjXÞ

pθðX;ZÞ
qϕðZjXÞ

" #
¼ 1

N

XN
i¼1

pθðX;ZiÞ
qϕðZijXÞ

" #
;

ð4Þ

where Zi are independent samples from the distribution qϕðZjXÞ and N is number

of samples. In this study, N ¼ 1 ´ 106.

Simulating MSAs. A random phylogenetic tree with 10,000 leaf nodes was gen-
erated using the populate function of the master Tree class from the ETE Toolkit48.
The random branch range is chosen to be from 0 to 0.3. The LG evolutionary
model47 was used to simulate the sequence evolution on the generated phylogenetic
tree. Sequences from leaf nodes were combined into an MSA. All simulated
sequences have 100 amino acids.

When exploring the position of the root node sequences in the latent space, we
also considered sequences simulated with heterotachy. The sequences with
heterotachy are simulated as follows. A random phylogenetic tree, T, with 10,000
leaf nodes was generated similarly as the above. Then two trees, T1 and T2, were
generated based on the tree T. Both T1 and T2 have the same tree topology as T.
The length of each branch in T1/T2 is set to the corresponding branch length in T
multiplied by a random number that is uniformly distributed between 0 and 2. Two
MSAs, each of which has 50 amino acids, were simulated based on T1 and T2,
respectively. Finally, the two MSAs are concatenated into 1 MSA with 100
amino acids.

Sequence profiles. Given a protein family’s MSA, sequence profiles66 model its
sequence distribution by assuming protein positions are independent, i.e.,

PðS ¼ ðs1; s2; :::; sLÞÞ ¼
YL
j¼1

PjðsjÞ; ð5Þ

where si 2 f0; 1; 2; :::; 20g; sj represents the amino acid type (labeled using num-
bers from 0 to 20) at the jth position of the protein; and PjðkÞ represents the
probability that the amino acid type at the jth position is k. Therefore, a profile
model of a protein family with L amino acids contains 21 ´ L parameters, which are
PjðkÞ; j ¼ 1; :::; L; k ¼ 0; :::; 20. These parameters are estimated using the protein
family’s MSA:

PjðkÞ ¼
PN

n¼1ewn � Iðsnj ¼ kÞPN
n¼1ewn ; ð6Þ

where N is the total number of sequences in the MSA; ewn is the normalized weight
of the nth sequence; snj is the amino acid type at the jth position in the nth sequence
of the MSA; Iðsnj ¼ kÞ is equal to 1 if snj ¼ k and 0 otherwise. With the estimated
parameters, the profile assigns a probability for any given sequence S with L amino
acids based on Eq. (5). The free energy of the sequence is calculated as
ΔGProfileðSÞ ¼ �logPðSÞ.

Direct coupling analysis. The DCA method7,26–31 models the probability of each
sequence as

PðS ¼ ðs1; s2; :::; sLÞÞ ¼
1
Z
exp �

XL�1

i¼1

XL
j¼iþ1

Jijðsi; sjÞ þ
XL
i¼1

biðsiÞ
" # !

; ð7Þ

where the partition function Z is

Z ¼
X

s1 ;s2 ;:::;sL

exp �
XL�1

i¼1

XL
j¼iþ1

Jijðsi; sjÞ þ
XL
i¼1

biðsiÞ
" # !

: ð8Þ

The parameters in DCA include the bias term bið�Þ for the ith position and the
interaction term Jijð�; �Þ between the ith and the jth position of the protein.
Learning these parameters by maximizing likelihood of the model on training data
involves calculating the partition function Z, which is computationally expensive.
Therefore, the pseudo-likelihood maximization method is used to learn these
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parameters26. Similarly as in sequence profiles, the free energy of a sequence is
calculated as

ΔGDCAðSÞ ¼ �log PðSÞ ¼
XL�1

i¼1

XL
j¼iþ1

Jijðsi; sjÞ þ
XL
i¼1

biðsiÞ þ logZ: ð9Þ

Although the partition function Z is not known, we can still calculate the difference
of ΔGDCA between two sequences (ΔΔGDCA), because the partition function Z is a
constant and does not depend on sequences.

GP regression. GP regression method67 is used to fit the fitness (T50) landscape
for chimeric cytochrome P450 sequences. To train a GP regression model, a kernel
function needs to be chosen to specify the covariance between sequences67. When
the latent space representation Z is used as the feature vector of sequences, the RBF
kernel67 is used:

kðZ1;Z2Þ ¼ σ2f exp � 1
2
jjZ1 � Z2jj2

λ2

� �
; ð10Þ

where Z1;Z2 are latent space representations of two protein sequences and jj � jj is
the Euclidean distance in the latent space. The variance parameter σ2f and the
length scale parameter λ in RBF are estimated by maximizing the likelihood of the
GP model on T50 training data. Given a test sequence X� , its fitness T50 value is
predicted as follows. First, the test sequence X� is converted into the latent space
representation Z� using the learned encoder. Then its T50 value is predicted as the
expected value of the posterior distribution, i.e.,

T50ðZ�Þ ¼ kT� ðKþ σ2nIÞ�1
y; ð11Þ

where k� is the vector of covariance between the test sequence Z� and all the
training sequences (k�i ¼ kðZ�;ZiÞ); K is the covariance matrix between all pairs of
training sequences (Ki;j ¼ kðZi;ZjÞ). σ2n is the variance of the experimental mea-
sure noise of T50, which is also estimated by maximizing the likelihood of the GP
model on the T50 training data. In addition to the predicted value of T50, the GP
regression also provides the variance of the prediction as

varðT50ðZ�ÞÞ ¼ kðZ�;Z�Þ � kT� ðKþ σ2nIÞ�1
k� ð12Þ

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The multiple sequence alignments of the three natural protein families (fibronectin type
III, cytochrome P450, and staphylococcal nuclease) analyzed in this study are publicly
available in the Pfam2 database (http://pfam.xfam.org) via Pfam accession ids (PF00041,
PF00067 and PF00565). The seven realistic phylogenetic trees from the benchmark set of
the FastTree study49 can be downloaded from the address: http://www.microbesonline.
org/fasttree/downloads/aa5K_new.tar.gz. The experimental T50 values for 278
P450 sequences are downloaded from the supplementary dataset of refs. 55,56. The
experimental folding free energies of both fibronectin type III and staphylococcal
nuclease are downloaded from the Protherm database59.

Code availability
The source code required to reproduce the results in this manuscript is freely available at
https://github.com/xqding/PEVAE_Paper.
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