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E V O L U T I O N A R Y  B I O L O G Y

Amino acid exchangeabilities vary across  
the tree of life
Zhengting Zou and Jianzhi Zhang*

Different amino acid pairs have drastically different relative exchangeabilities (REs), and accounting for this 
variation is an important and common practice in inferring phylogenies, testing selection, and predicting mutational 
effects, among other analyses. In all such endeavors, REs have been generally considered invariant among 
species; this assumption, however, has not been scrutinized. Using maximum likelihood to analyze 180 genome 
sequences, we estimated REs from 90 clades representing all three domains of life, and found numerous 
instances of substantial between-clade differences in REs. REs show more differences between orthologous 
proteins of different clades than unrelated proteins of the same clade, suggesting that REs are genome-wide, 
clade-specific features, probably a result of proteome-wide evolutionary changes in the physicochemical 
environments of amino acid residues. The discovery of among-clade RE variations cautions against assuming 
constant REs in various analyses and demonstrates a higher-than-expected complexity in mechanisms of 
proteome evolution.

INTRODUCTION
The 20 amino acids that make up all proteins differ to various degrees 
in physicochemical properties such as volume, charge, and hydro-
phobicity. Because of these chemical differences the evolutionary 
acceptability of amino acid changes varies depending on the amino 
acids involved. Let the relative exchangeability (RE) between a pair 
of amino acids be the fixation probability of mutations converting 
between these amino acids, relative to the average fixation probability 
of all amino acid–altering (i.e., nonsynonymous) mutations. Note that 
the RE values do not equal the elements but instead are important 
components of the commonly known amino acid transition matrices. 
More precisely, the relative mutation rate from one amino acid to 
another, multiplied by their RE, is the corresponding relative amino 
acid substitution rate in evolution, which is what transition matrices 
such as the 20 × 20 Dayhoff matrix (1) describe. In other words, 
transition matrices are determined jointly by mutation and selec-
tion, while REs specifically reflect selection. REs, along with the 
Dayhoff matrix or its modern versions (2–5), are widely used in 
identifying homologous proteins, aligning protein sequences, 
estimating genetic distances, reconstructing molecular phylogenies, 
choosing substitution models, detecting positive Darwinian selection, 
testing protein sequence convergence, and predicting mutational 
effects, among other things (6–11). Therefore, estimating and under-
standing REs are important both theoretically and practically.

Although the transition matrix can vary among evolutionary lineages 
as a result of shifts of mutational patterns that are often manifested 
by nucleotide or amino acid compositional changes (12, 13), REs 
are widely believed to be invariant among species and so are typically 
estimated using all proteins from all species in a database (1–5). 
Tang and colleagues pioneered the estimation of REs using genome-
scale data from individual clades of species—primates, rodents, 
fruitflies, and yeasts (14). They estimated the 75 fixation probabilities 
for the 75 amino acid pairs mutually reachable by a single nucleotide 
mutation. They reported that the fixation probabilities respectively 
estimated from the four clades aforementioned are overall highly 

correlated (Pearson’s r = 0.78 to 0.91) and noted that the relatively 
low correlations between some clades may be due to the relatively 
small numbers of genes used in the estimation. However, they did 
not test whether REs differ significantly between any pair of clades. 
It is also unknown whether the level of variation in REs among the 
four clades is representative of all clades across the tree of life. Here, 
we use 180 genome sequences to estimate REs from a total of 90 clades 
throughout the three domains of life. We report unexpectedly large 
and statistically significant RE variations among clades, offer a mecha-
nistic explanation of this phenomenon, and discuss its implications.

RESULTS
Likelihood estimation of REs is reliable
We used a codon-based maximum likelihood (ML) method imple-
mented in Phylogenetic Analysis by Maximum Likelihood (PAML) 
(15) to estimate REs. The codon model used (16) is as follows
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Here, quv is the rate of substitution from codon u to v, v is 
the equilibrium frequency of the resultant codon v, summarized 
into vector ,  is the mutational transition/transversion rate ratio, 
and ij is the fixation probability of mutations converting codon u 
to v when u and v respectively code for amino acid i and j ≠ i, rela-
tive to the fixation probability of synonymous mutations. In this 
model, ij exists only if amino acids i and j are mutually reachable 
by a single nucleotide change; hence, ij’s form a vector  with 
75 elements under the standard genetic code. The 75 REs are esti-
mated by dividing the corresponding ij by , which is the overall 
fixation probability of nonsynonymous mutations relative to that of 
synonymous mutations. The above model can also be described by 
substituting ij with REij, where REij is the RE between amino 
acids i and j. Note that both the vector  and the scalar  are 
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average values across all codon sites in an alignment, and the same 
applies to REs.

To examine whether the ML estimates of REs are reliable, we 
conducted a computer simulation. Specifically, we simulated the 
evolutionary divergence of coding sequences between a pair of taxa 
following the codon model in Eq. 1, using a set of realistic parameters 
referred to as parameter set A, including REs, , , , the number of 
substitutions per codon between the two taxa (i.e., genetic distance), 
and the total sequence length (see Materials and Methods and data 
file S1). We then used PAML to estimate ij’s, which allowed the 
inference of REs. We repeated the simulation and estimation 100 times, 
and found that the 75 REs estimated from the simulated sequences 
are highly correlated with the REs specified in the simulation, with 
Pearson’s correlation r > 0.99 in every replicate (scheme I in Fig. 1A). 
To examine the generality of this finding, we used another set of 
realistic parameters (set B) to simulate sequences. Parameters REs, 
, , and  differ between the two sets. For instance, the REs in the 

two sets are only weakly correlated (r = 0.47). Under parameter set B, 
REs specified in the simulation and inferred from the simulated 
sequences are also highly correlated, with r > 0.99 in all 100 repli-
cates (scheme II in Fig. 1A). To investigate whether parameters other 
than REs and  affect RE estimation, we simulated sequence evolution 
using  and  from parameter set A but REs and  from parameter 
set B. We found that the estimated REs are highly correlated with 
those specified in the simulation (r > 0.99 in all 100 replicates; scheme 
III in Fig. 1A). Similar results were obtained when we simulated se-
quence evolution using  and  from parameter set B but REs and  
from parameter set A (r > 0.99 in all 100 replicates; scheme IV in 
Fig. 1A). These results suggest that ML estimates of REs are generally 
accurate and unaffected by variations of other parameters.

Because our objective is to test the constancy of REs across clades, 
we further used computer simulation to investigate the suitability of 
the ML method for comparing REs respectively estimated from two 
clades, each composed of two taxa. We found that when the same 
REs (and ) are used in the simulation of the two clades, regardless 
of whether  and  are the same (first four columns in Fig. 1B) 
or different (fifth and sixth columns in Fig. 1B) in the two clades, 
the two sets of estimated REs always have high correlations, with 
r > 0.99 in all 100 simulation replications under each parameter set. 
By contrast, when REs from the two parameter sets are respectively 
used in the simulation of the two clades, regardless of whether  and 
 are the same (seventh and eighth columns in Fig. 1B) or different 
(last two columns in Fig. 1B), the two sets of estimated REs are only 
weakly correlated, with r around the true value of 0.47 in the vast 
majority of simulation replications. These results indicate that the 
ML estimator is powerful and suitable for our study. Furthermore, 
we found that incorporating in our simulation a gamma distribu-
tion of among-site variation in substitution rate does not alter the 
above conclusion (fig. S1).

REs vary substantially among clades
Now that we have verified the reliability of the ML estimator, we 
applied this method to 90 clades, each represented by an alignment 
of concatenated coding sequences of all one-to-one orthologous 
genes from the genomes of two relatively closely related species or 
strains. For example, human and macaque are used to represent the 
primate clade, whereas mouse and rat are used to represent the 
rodent clade. The 90 clades cover 15 lineages in Eukarya (including 
six in vertebrates, two in insects, two in fungi, three in plants, and 
two in protozoa), 6 lineages in Archaea, and 69 diverse lineages in 
Bacteria (table S1). Figure 2A shows the comparison of REs estimated 
respectively from the primate clade (Homo sapiens and Macaca mulatta) 
and fruitfly clade (Drosophila sechellia and Drosophila simulans). 
While these two sets of REs are significantly positively correlated 
(r = 0.47, P < 2 × 10−5; Spearman’s rank correlation  = 0.61, P < 6 × 10−9), 
differences in some REs are clearly visible (e.g., between amino acids 
H and R; Fig. 2A). In addition, in fruitflies, the amino acid pair K-R 
has the highest RE, while in primates, the pair with the highest RE is 
T-M. This type of discordance is abundantly observed across the 
90 clades surveyed, as shown in Fig. 2B, where each row presents 
the ranks of the 75 REs from each clade. If an amino acid pair has 
the same RE rank in all clades, we should see only one color for the 
column of the amino acid pair. By contrast, we observe multiple colors 
in every column. For instance, the amino acid pair I-R has the second 
lowest RE (0.13) in the clade of two bacteria, Thermoanaerobacterium 
xylanolyticum and Thermoanaerobacterium thermosaccharolyticum, 

A

B

Fig. 1. Simulations demonstrate the accuracy of ML estimates of amino acid 
REs. (A) Pearson’s correlation (r) between estimated REs and the true values speci-
fied in simulations. The source of simulation parameters for each column is labeled 
below the x axis, where A and B refer to two different parameter sets (see the main 
text). There are 100 simulation replicates per column, represented by a boxplot. 
(B) Pearson’s correlation (r) between REs respectively estimated from two simulated 
clades. Parameters specified in the simulation of each of the two clades, presented 
below the x axis, correspond to the schemes described in (A). From the 10,000 
combinations of the 100 replicates of one scheme and the 100 replicates of another 
scheme, 1000 are randomly sampled and a boxplot of these 1000 r’s is plotted. In 
both panels, the lower and upper edges of a box represent the first (qu1) and third 
(qu3) quartiles, respectively, the horizontal line inside the box indicates the medi-
an (md), and the whiskers extend to the most extreme values inside inner fences, 
md ± 1.5(qu3 − qu1), and dots show outliers.
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but the second highest RE (5.0) in the clade of Phytophthora infestans 
and Phytophthora parasitica. For an average amino acid pair, the 
highest and lowest ranks in RE across the 90 clades differ by 50, 
demonstrating considerable variations in REs among clades.

Although the RE rank for an amino acid pair may vary among 
clades, this rank variation provides no information about the mag-
nitude of the change in the RE value. To investigate the extent of 
among-clade variation in RE values, we identified the maximal RE 
for each amino acid pair among all clades and presented the RE of 
the amino acid pair for each clade as a percentage of this maximal 

value (Fig. 2C). For example, for the amino acid pair V-F, the lowest 
RE, in the clade of two Lactobacillus bacteria (Lactobacillus rhamnosus 
and Lactobacillus paracasei), is only 15.1% of the highest value, 
which occurs in the primate clade (H. sapiens and M. mulatta). Because 
each column has at least one red cell (representing the maximal RE), 
the observation of blue cells (<40% of the maximal RE) in most columns 
of Fig. 2C indicates that the numerical values of REs vary considerably 
among clades for most amino acid pairs.

To verify that the above variations do not simply reflect sampling 
errors of RE estimates owing to small sample sizes for some amino 

A

B

D

C

E

Fig. 2. REs estimated from different clades vary greatly. (A) Comparison between the 75 REs respectively estimated from the primate clade and fruitfly clade. Each 
square shows the primate RE (upper right triangle) and fruitfly RE (lower left triangle) between the amino acid indicated on the x axis and that on the y axis. On the right-
hand side of the panel are indices for the 75 amino acid pairs shown on the x axis of (B) to (E). (B) Within-clade ranks of the 75 REs estimated from 90 clades across the tree 
of life. Each row represents a clade, while each column represents one amino acid pair. Higher ranks mean larger RE values. (C) REs as percentages of the largest RE of the 
amino acid pair among the 90 clades. (D) Within-clade ranks of the 75 REs estimated from data simulated using the primate REs and  along with other clade-specific 
parameters for all clades. (E) REs presented as percentages of the largest RE of the amino acid pair among all clades, estimated from the data simulated using the primate 
REs and  along with other clade-specific parameters for all clades.
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acid pairs, we simulated sequence evolution for each of the 90 clades 
using all parameters estimated from the respective clade concerned 
except for REs and , which were always estimated from the primate 
clade. We then estimated REs from the simulated sequences of each 
clade. This result serves as a negative control, because, although other 
parameters of simulation vary among clades, we do not expect to see 
a drastic variation in the estimated REs if the true REs used in the 
simulation are all the same. The results are presented in Fig. 2 (D and E), 
analogous in organization to Fig. 2 (B and C), respectively. For REs 
estimated from these simulated data, the rankings are more uniform 
(Fig. 2D), and the relative values are also more similar (Fig. 2E) 
across different clades. Furthermore, when the simulation is con-
ducted with all clade-specific parameters (including ) except that 
only REs are always from primates, the estimated REs from different 
simulated clades remain similar (fig. S2, A and B). As a positive control, 
we simulated the sequences of each of the 90 clades using all parameters 
estimated from the clade itself and then estimated REs from the 
simulated sequences. As expected, the outcomes (fig. S2, C and D) 
are similar to those in Fig. 2 (B and C) and are more heterogeneous 
than those in the negative controls (Fig. 2, D and E, and fig. S2, A 
and B). These controls indicate that when and only when different 
REs are specified in the simulation of the 90 clades do the estimated 
REs show substantial among-clade variations. In other words, they 
indicate that REs of the actual data genuinely vary greatly among clades.

Shuffling codons between clades tests  
the significance of RE differences
Although we have shown substantial variations of RE estimates 
among clades, we have not offered a formal statistical test demon-
strating that this variation is significantly larger than expected by 
chance for any pair of clades compared; the relevance of the simulation 
used above depends on the assumption that the model and associated 
parameters used in the simulation mimic actual evolution. Here, we 
develop a shuffling scheme to statistically test RE differences between 
clades, without making the above assumption. For two pairwise 
alignments respectively corresponding to two clades, one species per 
clade is arbitrarily designated taxon 1 while the other is designated 
taxon 2. For each clade, a codon position is classified into 20 groups 
according to the amino acid encoded by the codon in taxon 1. Within each 
group, a codon position is further classified into the nonsynonymous, 
synonymous, or invariant subgroup if the two taxa have nonsynonymous 
difference(s), have synonymous but no nonsynonymous difference(s), 
or have no difference at the codon position, respectively. Codon 
positions in the two alignments that belong to the same group and 
subgroup are randomly shuffled. For example, a codon site occupied 
by CTT (L) in human and CCT (P) in macaque (a nonsynonymous 
site for leucine) may be exchanged with a codon site occupied by 
CTA (L) in mouse and GTA (V) in rat (also a nonsynonymous site 
for leucine), where human and mouse are the designated taxon 1 in 
the primate clade and rodent clade, respectively. This way, amino 
acid substitutions and associated REs are randomized between the 
two clades, whereas other properties such as amino acid frequencies 
remain largely unaltered because most codon positions are either 
synonymous or invariant and because shuffling occurs within the 
same group and subgroup. If the original REs of the two clades are 
the same, shuffling will not increase their similarity. If the original 
REs are significantly different between the two clades, we expect the 
two sets of REs estimated after shuffling to show a higher correlation 
with each other than before shuffling.

To verify the reliability of the shuffling test, we performed the 
test on the simulated sequence alignments analyzed in Fig. 1A. We 
chose 10 simulated alignments under each simulation scheme (I to IV) 
and performed the shuffling test for all pairs of the 40 simulated 
clades. The null hypothesis of equal REs should not be rejected for 
clade pairs simulated with the same REs but should be rejected for 
clade pairs simulated with different REs. For instance, comparing 
an alignment simulated under scheme I with that simulated under 
scheme IV in Fig. 1A should show no significant difference in esti-
mated REs because they were simulated using the same set of REs. 
Our shuffling test found this to be the case (Fig. 3). Specifically, for 
each comparison, the blue color code indicates the frequency with 
which the RE correlation between two clades is higher after shuffling 
than before shuffling. The darker the blue hue, the greater the fre-
quency. If our test is unbiased, most comparisons between clade 
pairs simulated using the same REs should show some bluish color, 
because the RE correlation before shuffling should fall within the 
distribution of the RE correlation after shuffling, which is the case 
when two clades are simulated under the same set of all parameters 
(I versus I, etc., triangle blocks along the diagonal line). The block 
comparing scheme I versus scheme IV and that comparing scheme 
II versus scheme III are white (Fig. 3), suggesting that our test is 
conservative. By contrast, our test should find REs significantly dif-
ferent in the comparison between alignments simulated under scheme I 
versus scheme III. This is indeed true in each of the 100 compari-
sons attempted (the upper left deep blue block in Fig. 3). Similar 
results were obtained in the comparison between alignments simu-
lated under scheme II versus scheme IV, scheme I versus scheme II, 
and scheme III versus scheme IV (the other three deep blue blocks 

Fig. 3. Performance of the shuffling test in simulated data. Each cell shows a 
shuffling test result that indicates by color the number of times that Pearson’s cor-
relation coefficient between estimated REs of the two simulated clades compared 
(rtrue) is smaller than that between REs estimated from randomly shuffled align-
ment pairs (rshuffle) in 100 shuffles. Labels on the x and y axes refer to the simulation 
schemes specified in Fig. 1A. Ten simulation replicates per scheme are analyzed.
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in Fig. 3). Hence, despite its conservativeness on negative controls, 
our shuffling test has power to reject erroneous null hypotheses of 
equal REs when they are sufficiently different such as in Fig. 2A.

REs are significantly different between many clades
After verifying the performance of the shuffling test, we applied it to all 
4005 pairs of the 90 clades and found REs to be significantly different 
at the nominal P value of 0.01 for 3450 clade pairs (86.1%, Fig. 4A). 
As expected, statistical significance is enriched among clade pairs with 
low RE correlations (P value < 3 × 10−179, Mann-Whitney U test be-
tween RE correlation coefficients of significant clade pairs and those 
of nonsignificant clade pairs; fig. S3). Because 40.05 tests are expected 
to be significant at this P value by chance, our observation of thousands 
of significant tests suggests genuine variations in REs among clades. 
However, because clade pairs are not independent from one another, 
we performed a negative control experiment to ensure that the above 
conclusion is valid. Specifically, we performed the shuffling test to all 
4005 clade pairs when each clade is simulated with the primate REs 
and  along with other clade-specific parameters, and only 19 clade 
pairs showed significantly different REs (Fig. 4B), equivalent to a 
0.5% false-positive rate. In addition, the RE correlations are around or 
even below zero for many clade pairs in the real data (reflected by white 
or even light blue hues in the upper right half of the heatmap in Fig. 4A), 
whereas this is not the case in the simulated data (see the upper right 
half of the heatmap in Fig. 4B). These results from the negative control 
verify that the vast majority of significant RE variations in Fig. 4A are true.

Several types of amino acid substitutions are rare in evolution 
and hence may differ in frequency between two clades simply by 
chance. In our data, amino acid substitutions between W and C, 
between W and S, between W and G, and between W and R have 
<10 observed cases in 43, 28, 19, and 18 clades, respectively. To exclude 
the possibility that the significant shuffling test results are entirely 
due to these rare substitution types, we recalculated the RE correla-
tions before and after shuffling upon the exclusion of these four 
amino acid pairs. Of the 3450 clade pairs with significantly different 
REs in the original analysis, the RE differences remain significant 
for 3429 pairs. Hence, the rare types of amino acid substitutions do 
not explain the prevalence of RE variations among clades.

Significant between-clade RE differences  
abound even for orthologs
The coding sequence alignment of each clade contains all ortholo-
gous nuclear genome-encoded proteins between the two taxa compared. 
However, each clade may have clade-specific proteins such that the 
REs of two clades may not have been estimated from the common 
set of proteins. To investigate whether the existence of clade-specific 
proteins is the cause of significant RE differences between clades, 
we analyzed only shared proteins between clades. Specifically, we 
compared the primate clade of human and macaque with 10 other 
mammalian clades retrieved from OrthoMaM (17) to ensure the 
presence of sufficiently large sets of orthologs between clades (table S2). 
For each pair of clades, we identified one-to-one orthologous pro-
teins between the two clades and estimated REs from each clade 
using only these proteins. In all 10 comparisons, REs of different 
clades are significantly different (Fig. 5A), indicating that even 
orthologous proteins show different REs in different clades.

The above results suggest that REs may be clade-specific features 
that apply to the proteome as a whole. To test this hypothesis, in a 
comparison between two clades, we separated the genes from each 

clade into two categories: those with orthologs (group O) and those 
without orthologs (group N) in the other clade. As an example, we 
compared the rodent clade (R) of mouse and rat with the avian clade 
(A) of chicken and turkey (see Materials and Methods). Hence, we 
have four groups of proteins forming four alignments: rodent ortho-
logs (RO), rodent non-orthologs (RN), avian orthologs (AO), and 
avian non-orthologs (AN). We found that the correlation in RE be-
tween RO and RN (rRO-RN) is 0.98, while rAO-AN is 0.96 (Fig. 5B). By 
contrast, correlation between the orthologous genes of the two 
clades (rRO-AO) is only 0.85, similar to that between nonorthologous 
genes of the two clades (rRN-AN = 0.87; Fig. 5B). That REs are more 
similar between different genes in the same genome than the same 
genes in different genomes confirms the existence of genome-specific 
REs. Amino acid and codon usages are known to be genome-specific 
features (18–20). When a similar analysis is performed on codon 
frequencies of the above four groups of genes, we found that different 
genes in the same genome share more similar codon frequencies 

A

B

Fig. 4. Shuffling tests of RE differences between clades. (A) Many clade pairs show 
significant RE differences in real data. (B) Few clade pairs show significant RE differ-
ences in negative control data simulated using the primate REs and  along with 
other clade-specific parameters for all clades. In each panel, both axes indicate the 
90 clades analyzed. Each cell in the upper right triangle shows Pearson’s r between 
the REs of the two clades compared, with the color scale for r provided on the right 
side of the figure. Each cell in the lower left triangle indicate a shuffling test result; 
tests with nominal P < 0.01 (i.e., observed RE correlation is lower than that in each 
of the 100 shuffled alignment pairs) are indicated by gray color.
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(rRO-RN = 0.99, rAO-AN > 0.99; Fig. 5B) than the same genes from 
different genomes (rRO-AO = 0.95, rRN-AN = 0.90; Fig. 5B). Thus, the 
genome specificity of REs is analogous to that of codon frequencies.

Between-clade differences in RE estimates  
are not artifacts of nonstationary evolution
To investigate the underlying mechanism of the among-clade RE 
variations, we first examined whether this phenomenon is an artifact 
of using a time-reversible codon substitution model in the ML esti-
mation of REs when there are systematic changes in codon frequencies 
within a clade (i.e., disequilibrium). Specifically, for each clade, we 
respectively estimated codon frequencies from each of the two 
sequences in the alignment. We then generated a random coding 
sequence according to the mean codon frequencies of the two sequences. 
We separately evolved this sequence along two equal-length branches, 
under Markov models where the equilibrium codon frequencies 
equal the observed codon frequencies from the two extant sequences, 
respectively. Primate REs and  were used in the simulation of the 
clade. This was done for all 90 clades, followed by estimation of REs 
from each simulated clade. We found that the variations in RE rank 
and percentage among the 90 simulated clades are minimal (fig. S4, 
A and B), resembling those in the negative control mentioned 
(Fig. 2, D and E). Shuffling tests were conducted on the simulated 
data for all 4005 clade pairs, but only 11 tests (0.3%) were significant, 
demonstrating that codon frequency disequilibria within clades cannot 
explain significant between-clade differences in the estimated REs.

Proteome-wide changes in physicochemical  
environments of amino acid residues?
Although codon and amino acid frequencies vary among genomes 
(and clades), these variations per se cannot explain RE variations. 
This is because any amino acid or codon frequency variation, be it 

caused by mutation or selection, is taken care of by the equilibrium 
frequencies v in our model specified by Eq. 1. For example, 5′-C-
phosphate-G-3′ (CpG) hypermutability may drive amino acid com-
position evolution (21). To investigate whether this factor explains 
the observed RE variation among clades, we separated the 75 categories 
of amino acid changes into two groups: the “CpG group” where an 
amino acid change can be caused by CpG changes and the “non-
CpG group” including all remaining categories. We calculated the 
mean RE ranks of each category in 12 clades that have putative CpG 
hypermutability (21) and found that the mean RE ranks of the CpG 
group are not significantly higher than those of the non-CpG group 
(P = 0.3, Mann-Whitney U test). Furthermore, clade pairs with signif-
icant RE differences do not preferentially contain one clade with CpG 
hypermutability and one without (P = 0.15, Fisher’s exact test). Thus, 
we confirmed empirically that CpG hypermutability in certain 
clades cannot explain our observed RE differences between clades.

Mutational bias is likely more complex than what Eq. 1 describes. 
Although the altered equilibrium codon frequencies caused by any 
mutational bias are dealt with by Eq. 1, the mutational bias itself 
may not be. To examine whether mutational biases that are not 
modeled by Eq. 1 could explain our observation, we simulated the 
90 clades using primate REs and  along with other clade-specific 
parameters while setting the mutation rate between C and T twice 
that between A and G. In other words, the two types of transitional 
mutations now have different rates. We then estimated REs from the 
90 clades using Eq. 1 but found only 11 of 4005 clade pairs (0.3%) to 
have significantly different REs. Other mutation biases are in prin-
ciple similar to the one above examined. Thus, mutational biases 
unmodeled by Eq. 1 are unlikely to be responsible for the observed 
pervasive among-clade RE variations. This is probably because the 
main impact of any mutational bias is on equilibrium codon fre-
quencies, which are already taken care of in RE estimation.

0.80

0.85

0.90

0.95

1.00

r

RO AO RO RN RO AO
RN AN AO AN AN RN

Between estimated REs
Between codon frequencies

A B

Fig. 5. REs are genome-wide and clade specific. (A) Shuffling tests for equal REs between the primate clade and each of 10 other mammalian clades for orthologs 
shared between the two clades. Note that the scale of the y axis is from 0.8 to 1.0. Each column is a shuffling test, with the red dot indicating Pearson’s correlation coefficient 
(r) between the REs estimated from the two clades compared and the 100 gray dots representing r’s between the REs estimated from 100 shuffled alignment pairs. A 
significantly smaller r than the random expectation at the nominal P value of 0.01 is found for each column except the last, which is a negative control of the shuffling test 
between the primate clade and itself. Labels on the x axis indicate the two taxa in each clade compared with the primate clade (table S2). (B) Correlations of REs and codon 
frequencies between different genomic parts of the rodent clade and avian clade. Labels on the x-axis indicate the two genomic parts compared: orthologs and non-
orthologs between the two clades compared. RO, rodent orthologs; RN, rodent non-orthologs; AO, avian orthologs; AN, avian non-orthologs.
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The RE variation among clades must be caused by an evolutionary 
change in a property of amino acid pairs rather than that of individual 
amino acids. One possibility is that, changes in amino acid frequencies 
or other proteomic characteristics lead to a proteome-wide alteration 
in the physicochemical environment of amino acid residues such 
that two amino acids that are sensed by natural selection to be similar 
enough in one clade become too different to be exchangeable in 
another clade. For instance, proteins may be generally more compact 
in one clade than in another. As a result, amino acid pairs having 
relatively large size differences are more likely to show lower REs in 
the first clade than in the second clade, when compared with amino 
acid pairs having relatively small size differences. However, because 
we generally do not know overall protein compactness (or other 
properties) in each species, we could only test whether groups of 
amino acid pairs, each with relatively large physicochemical differences, 
show more consistent RE differences (in terms of sign) between two 
clades than groups with relatively small physicochemical differ-
ences. To this end, we define for a group of n amino acid pairs 
the RE bias between clade A and clade B by ​​​ 1 _ n​​∣​​ ​Σ​i=1​ n  ​ I(​RE​ i​​ (A ) > ​RE​ i​​
(B ) ) − ​Σ​i=1​ n  ​ I(​RE​ i​​(A ) < ​RE​ i​​(B ) ) ​∣​​​​, where I is the indicator function, 
which is equal to 1 when the condition in the parentheses is met and 
0 otherwise. A large RE bias indicates that the focal group of amino 
acid pairs have consistently lower RE values in one clade than the other. 
For instance, we categorized the 75 amino acid pairs into two groups: 
The “changed” group includes pairs with different amino acid volumes, 
while the “unchanged” group includes the rest. Across the 4005 
clade pairs examined, the changed group of amino acid pairs gener-
ally shows a higher RE bias than the unchanged group (Fig. 6, A and B). 
A similar trend is observed when we categorize amino acid pairs by 
a change in amino acid polarity (Fig. 6, A and C), but the trend be-
comes less clear when we categorize amino acid pairs by a change in 
amino acid charge (Fig. 6, A and D). Because the dominating physico-
chemical factor influencing amino acid substitutions may vary among 
clades, for each specific property considered, the RE bias for the 
changed group is not expected to be larger than that for the un-
changed group in every clade, as is observed (Fig. 6, B to D). These 
results support our hypothesis that amino acid substitutions involving 
large physicochemical changes are sensitive to the ambient environment 
such that proteome-wide changes in physicochemical environments 
can contribute to the observed RE variations.

DISCUSSION
In this study, we adopted a likelihood method to estimate REs 
between amino acids from pairs of genome sequences and found 
significant and substantial RE variations across the tree of life. 
Using a series of negative and positive controls, we demonstrated 
that our RE estimates are reliable and that the revealed RE variations 
are genuine.

Why do REs vary among species? Because each amino acid site 
in the proteome of a species has a virtually unique environment 
(e.g., specific adjacent amino acid residues, interacting molecules, 
and physicochemical microenvironment), it is expected that the 
REs vary among amino acid sites. However, the RE for an amino 
acid pair is estimated by averaging across a large number of sites 
and hence is not expected to vary among species unless the mean 
RE of the amino acid pair is truly different among species. In other 
words, our results indicate the existence of genome-wide, clade-
specific REs, a phenomenon analogous to the well-documented 

among-species variations in genomic GC (guanine and cytosine) con-
tent and codon usage (8). While the latter phenomena are known to have 
resulted from variations in mutational and potentially selectional pat-
terns across species, among-clade variations in REs are by definition 
caused by selectional differences. That is, the mechanism of proteome 
evolution varies across lineages. This interpretation is supported by the 
observation that REs are more similar between unrelated proteins of 
the same clade than between orthologous proteins of different clades.

We hypothesized and provided evidence that RE variations are at 
least in part caused by proteome-wide alterations of physicochemical 
environments of amino acid residues such that some but not all amino 
acid pairs become less exchangeable in one clade than in another. 
Such proteome-wide alterations of physicochemical environments 
could be a consequence of changes of proteomic characteristics. For 
example, proteins are generally more compact with denser salt bridges 
in thermophilic organisms than in mesophilic organisms (22, 23), 
which potentially affects the physicochemical environments of amino 
acid residues. This said, the exact mechanisms underlying the landscape 
of RE variation require further investigations, similar to the situation 
for genomic GC content (24–31) and codon usage (18–20, 32–37) 
variations with regard to their potential selecting agents. Recent 

Fig. 6. RE bias between clades is greater for amino acid pairs that involve 
physicochemical property changes than those that do not involve such changes. 
(A) Boxplots of RE bias (see the main text for definition) of the group of amino acid 
pairs with (gray) and without (white) changes in the amino acid property indicated. 
The lower and upper edges of a box represent the first (qu1) and third (qu3) quartiles, 
respectively; the horizontal line inside the box indicates the median (md), the whiskers 
extend to the most extreme values inside inner fences, md ± 1.5(qu3 − qu1), and 
the dots indicate outliers. Data in gray are significantly greater than those in white 
for each property (P values are from Mann-Whitney U test). (B to D) RE bias of 
groups of amino acid pairs with and without volume (B), polarity (C), and charge 
(D) changes for each of the 4005 clade pairs. Each dot represents one clade pair. 
A uniform noise between −0.03 and 0.03 was added to all RE bias values in (B) to 
(D) to enhance readability of the figure. The dashed line indicates y = x, while numbers 
above and below the diagonal indicate numbers of dots residing in corresponding 
regions before the addition of the random noise.
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analyses of a few plant and animal clades suggested that a shift in 
positive selection (e.g., because of an environmental change) is more 
likely than that in negative selection to create RE differences among 
lineages (38, 39). It will be interesting to test this hypothesis in addi-
tional lineages, especially unicellular organisms.

The revelation of genome-wide, clade-specific REs means that 
different REs may need to be considered for different species in the 
numerous analyses that depend on REs. As mentioned in Introduction, 
these analyses include many that are fundamental to molecular evo-
lutionary research. To what extent the consideration of among-lineage 
variations in REs affects the conclusions of many published studies 
and future researches that rely on REs awaits exploration.

MATERIALS AND METHODS
Sequence data acquisition and alignment
Sequence data used were retrieved from various sources listed in 
table S1. Coding sequence alignments of four mammalian clades, 
fruitflies, and yeasts were directly retrieved from respective databases. 
For each of the other eukaryotic clades, we queried in Ensembl 
(https://useast.ensembl.org/index.html) a list of all one-to-one 
orthologous genes for the pair of species and downloaded their coding 
sequences. The coding sequences were translated to protein sequences 
using Multiple Alignment of Coding Sequences (MACSE) v1.02 (40). 
Local pairwise protein sequence alignment was performed for each 
pair of orthologs by Multiple Alignment using Fast Fourier Transform 
(MAFFT) v7.294b (41) using the L-INS-i algorithm. The correspond-
ing coding sequence alignment was then derived using a custom Python 
script. All prokaryotic clades were sampled from the strains avail-
able in the Alignable Tight Genomic Clusters (ATGC) database (42). 
All alignments were filtered so that no gaps, missing data, or ambiguous 
codons exist. The alignments and relevant Python scripts have been 
deposited to GitHub (https://github.com/ztzou/REvariation).

For the analyses of orthologous versus nonorthologous genes 
between the rodent clade and the avian clade, we downloaded all 
coding sequences of mouse, rat, chicken, and turkey from Ensembl 
84. In each species, the longest transcript of each gene was retained 
for subsequent analysis. We then obtained from Ensembl a list of 
one-to-one orthologs between mouse and rat, a list of one-to-one 
orthologs between chicken and turkey, and a list of one-to-one 
orthologs between mouse and chicken. We compared REs respec-
tively estimated from four groups of genes: RO, AO, RN, and AN. 
RO refers to the group of genes that appear on both the first and 
third lists. AO refers to the group of genes that appear on both the 
second and third lists. RN refers to the group of genes that appear 
on the first list but not on the third list. AN refers to the group of 
genes that appear on the second list but not on the third list.

ML estimation of model parameters
For each alignment of two coding sequences, the program codeml 
in PAML4.9 was used to estimate  under a user tree of two taxa, 
free parameters of individual codon frequencies, free parameter of , 
NSsites = 0, and no constraint of molecular clock. The control 
parameter aaDist was set to be 7 to allow the estimation of 75 indi-
vidual ij values.

Simulation of coding sequence evolution
All simulations followed the Markovian codon substitution model 
specified in Eq. 1 (43). To simulate a clade with a pair of taxa, a 61 × 61 

transition matrix P(t) was first derived. For each pair of codons, the 
instantaneous substitution rate q was set as in Eq. 1, according to the 
REs, , , and  specified. The rate matrix Q was normalized to have 
a total rate of 1, and the transition matrix P(t) was equal to eQt (43). 
For each codon to be simulated, an ancestral codon was chosen 
randomly according to the equilibrium codon frequencies and then 
was subject to evolution under a Markov process xt = x0 · P(t), based on 
the specified genetic distance t and the transition matrix P(t). Two 
descendant codons were generated respectively for the pair of taxa, 
sampled from the “evolved” probability distribution xt. Parameters REs, 
, , and  used in the simulations of Fig. 1 were estimated from either 
the primate clade (parameter set A) or the fruitfly clade (set B). In 
Figs. 1 and 3, the sequence length was 5,000,000 codons, and the genetic 
distance between the sequences was 0.1 substitution per codon. The real 
sequence lengths and inferred genetic distances were used in simula-
tions related to Figs. 2 (D and E) and 4B and figs. S2 and S4. All codons 
had the same evolutionary rate in simulation unless mentioned. When 
site-specific relative evolutionary rates were used (fig. S1), the relative 
rates were sampled from a gamma distribution with the shape parameter 
of 1. Parameters REs, , , , genetic distance, and coding sequence 
length estimated for each of the 90 clades are listed in data file S1 
and were used in the aforementioned simulations. Python scripts 
for deriving the transition matrix and for sequence simulation can 
be accessed from GitHub (https://github.com/ztzou/REvariation).

Amino acid classifications by physicochemical properties
Amino acid classifications by physicochemical properties follow 
Zhang (44). On the basis of charge, amino acids were classified into 
three groups: positively charged (R, H, and K), negatively charged 
(D and E), and neutral (A, N, C, Q, G, I, L, M, F, P, S, T, W, Y, and 
V). On the basis of polarity, amino acids were classified into two 
groups: polar (R, N, D, C, Q, E, G, H, K, S, T, and Y) and nonpolar 
(A, I, L, M, F, P, W, and V). On the basis of volume, amino acids 
were classified into three groups: small (A, G, P, S, T, N, D, Q, E, I, 
L, M, and V), large (R, H, K, F, W, and Y), and special (C).

Data and program availability
All sequence alignments and computer programs associated with this 
work are available at GitHub (https://github.com/ztzou/REvariation).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/12/eaax3124/DC1
Data file S1. Parameters estimated from each of the 90 clades and used in various simulations.
Fig. S1. Simulations demonstrate the accuracy of ML estimates of amino acid REs.
Fig. S2. REs estimated from 90 clades respectively simulated using clade-specific parameters 
unless specified.
Fig. S3. Frequencies of between-clade RE correlations for clade pairs that show significant 
(orange, 3450 pairs) or nonsignificant (gray, 555 pairs) RE differences.
Fig. S4. REs respectively estimated from 90 clades simulated under nonstationary evolution of 
codon frequencies within clades (see the main text).
Table S1. Taxon composition and data source of all 90 clades for which relative amino acid 
exchangeabilities (REs) are estimated.
Table S2. Ten pairs of mammalian clades whose amino acid REs are compared for orthologous 
coding sequences.

View/request a protocol for this paper from Bio-protocol.
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