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Epistasis, or genetic interaction among a set of mutations, 
impacts the phenotypic effects of mutations and shapes funda-
mental evolutionary processes1. Epistasis is said to be positive 

(or negative) for a particular trait such as fitness if the trait value of 
the individual with multiple mutations is greater (or smaller) than 
the expectation from the corresponding single mutants under no 
epistasis1. A number of evolutionary theories, such as the mutational 
deterministic hypothesis of the evolution of sexual reproduction2 
and the hypothesis of reduction in mutational load by truncation 
selection against deleterious mutations, depend on assumptions of 
general trends of epistasis3. Universal patterns involving epistasis 
are emerging from decades of intense investigations4,5. For instance, 
many experimental evolution studies have shown that fitness 
increase slows during organismal adaptation to a constant environ-
ment6. While the speed of fitness increase is typically measured per 
unit time6, the same trend is observed when the speed is measured 
per mutation accrued7. This phenomenon of slowing adaptation is 
at least in part due to diminishing-returns epistasis—a common 
observation that advantageous mutations are less beneficial on fit-
ter genetic backgrounds8–11. Because diminishing-returns epistasis 
is a form of negative epistasis, the above observations are thought 
to indicate a preponderance of negative epistasis between benefi-
cial mutations and a concave fitness landscape12. Given the concave 
shape of the landscape inferred from ascent to a fitness peak, one 
would also expect to observe a concave shape during descent from 
the fitness peak (that is, accelerating fitness decline by mutation 
accumulation and negative epistasis between deleterious muta-
tions). In contrast with this expectation, mutation accumulation 
experiments in the near absence of selection have revealed deceler-
ating fitness declines13–15, and manipulative experiments have dem-
onstrated that deleterious mutations tend to be less harmful in less 
fit genetic backgrounds (also known as increasing-costs epistasis 
because of the higher costs of deleterious mutations in fitter geno-
types)16. These observations concerning deleterious mutations are 
thought to indicate a convex fitness landscape and a predominance 
of positive epistasis12,13.

Apparently, the inferred shape of the fitness landscape and dis-
tribution of epistasis from climbing fitness peaks contrast with the 
shape and distribution inferred from going down fitness peaks12. 
Consider a restatement of the problem. Mutation accumulation and 
manipulative experiments suggest that the majority of mutational 
paths down a fitness peak are convex (positively epistatic). Thus, 
most mutational pathways up the peak during adaptation should 
be convex as well (positively epistatic), but the opposite is observed. 
We term this contradiction the uphill–downhill paradox.

Although several theoretical models have been proposed to 
explain the inferred prevalence of either negative or positive epis-
tasis9,10,13,16–20, these models cannot simultaneously explain both in 
the same species, leaving the uphill–downhill paradox unresolved. 
For instance, the modular life model explains the negative epistasis 
among beneficial mutations by functional saturation of modules17, 
but it also predicts negative epistasis among detrimental mutations. 
The metabolic control theory has been invoked in explaining the 
positive epistasis among deleterious mutations because a deleteri-
ous mutation in a linear pathway causes a smaller flux reduction 
when other enzymes in the pathway have already been adversely 
affected16,21. However, this theory would also predict positive epis-
tasis of beneficial mutations. Alternatively, one must additionally 
assume that adaptation is biased towards mutations that disrupt 
costly expendable pathways in order to explain diminishing returns12. 
Clearly, this assumption cannot be generally true. Theoretical work 
making no mechanistic assumptions has shown some promise22,23. 
Such work has found that pairwise epistasis between successive 
adaptive mutations is positively biased during late stages of adapta-
tion, even in a landscape of no overall bias of epistasis, suggesting 
that the epistasis between beneficial mutations may not represent 
the overall epistasis in the landscape. However, how this finding 
relates to the observed epistasis trends in adaptation and mutation 
accumulation is unclear. Rather than assuming a specific biological 
mechanism, below we propose and demonstrate that epistasis is gen-
erally idiosyncratic and that this idiosyncrasy is responsible for the 
general trends in both climbing and descending from fitness peaks.
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results
Why epistasis could be highly idiosyncratic. Let g be the popula-
tion growth rate (also known as Malthusian fitness, logarithm of 
Wrightian fitness or fitness for short) of a genotype in an environ-
ment and let n be the number of nucleotide sites in the genome that 
impact g. In general, g can be expressed as the sum of 2n − 1 terms of 
fitness effects, including the additive effect of every site, the interac-
tive effect of every pair of sites, the interactive effect of every triplet 
of sites, and so on (see Methods). We refer to this model of fitness 
landscape as the n-order model, because it includes all terms up to 
the n-order interaction. It can be shown that a mutation at a single 
site changes up to 2n−1/(2n − 1) = ~50% of all terms of effects making 
up g. Under the assumption that the interactive terms are idiosyn-
cratic (that is, varying with the interacting nucleotides involved), a 
single mutation can differentially alter as many as 2n−2 (or ~25% of) 
terms of effects in two genotypes that differ by only one nucleotide; 
this number can rise up to 2n−1 (or ~50% of) terms if the two geno-
types are more different (see Methods). Given the potential of such 
a large fraction of differentially affected terms of g, it is not surpris-
ing that the same mutation could have vastly different effects in dif-
ferent genotypes. As long as the idiosyncrasy assumption holds, the 
same argument can be made for any phenotypic trait whose value is 
expressed as the sum of all additive and interactive terms of effects. 
Of course, not all 2n − 1 terms of effects are of the same magnitude, 
which would increase or decrease the effective fraction of terms 
differentially altered by a mutation. Regardless, the above consider-
ation elucidates why mutational effects could be highly sensitive to 
the genetic background when biological interactions are complex.

Epistasis is highly idiosyncratic. To quantify the above sensitivity 
that originates from idiosyncratic epistasis, we define an idiosyn-
cratic index (Iid) for a mutation as the variation in the fitness dif-
ference between genotypes that differ by the mutation, relative to 
the variation in the fitness difference between random genotypes 
for the same number of genotype pairs. Here, the variation may be 
measured by s.d., range or other statistics. We can further compute 
the Iid for a fitness landscape by averaging Iid of individual mutations 
considered. The Iid for a landscape varies from 0 to 1, corresponding 
to the minimum and maximum levels of idiosyncrasy, respectively. 
We first estimated Iid for the fitness landscape of a yeast transfer RNA 
(tRNA) gene that includes experimentally measured fitness of over 
65,000 genotypes24. For example, the G-to-A mutation at site 10 has 
a fitness effect varying from −0.53 to 0.29 (s.d. = 0.13) on 88 differ-
ent backgrounds. For comparison, the fitness difference between a 
randomly picked genotype and another randomly picked genotype 
varies from −0.59 to 0.74 (s.d. = 0.26) for 88 genotype pairs sampled 
(Fig. 1a). So, the ratio of the two s.d. values is 0.49. This analysis 
was repeated for 828 single mutations (considering reverse muta-
tions) (Fig. 1b) and the average ratio of s.d. is Iid = 0.612 ± 0.005 
(s.e.m.). Iid can be similarly defined for non-fitness traits, and we 
estimated Iid for a variety of empirical phenotype landscapes that 
are experimentally determined24–32 and one that is computationally 
predicted (RNA stability) (Supplementary Table 1). Overall, Iid var-
ies from 0.18 to 0.80 among the 12 landscapes examined, with a 
mean of 0.43 (Fig. 1c). Hence, in an average phenotype landscape, 
a particular mutation’s effects across different backgrounds are 43% 
as variable as if they are randomly drawn from the effects of any 
number of mutations on any genetic background. To exclude the 
possibility that the observed idiosyncrasy is largely due to imprecise 
phenotyping, we computed Iid for the same 828 mutations in the 
tRNA landscape, but used fitness estimates from different numbers 
of experimental replicates, because the measurement error should 
decrease with the number of replicates. We found that Iid is insensi-
tive to the number of replicates (Extended Data Fig. 1a), suggesting 
that the high idiosyncrasy is not explained by potentially imprecise 
phenotyping. Additionally, phenotypic values in the RNA stability 

landscape were computed deterministically without measurement 
error, but mutational effects are still one-quarter as idiosyncratic as 
the maximum (Iid = 0.25). We similarly observed high idiosyncrasy 
when the range instead of s.d. of effects was used in estimating Iid 
(Extended Data Fig. 1b). Finally, another measure of idiosyncrasy is 
the frequency of sign epistasis in a landscape, or the proportion of 
mutations that are beneficial in some backgrounds but detrimental 
in others. In agreement with the high idiosyncrasy indices, nearly 
all mutations exhibit sign epistasis in all landscapes (93.7% of muta-
tions, on average) (Extended Data Fig. 1b).

Expected consequences of idiosyncratic epistasis. Below, we dem-
onstrate the consequences of the substantial idiosyncrasy we find 
with regard to fitness, but the same applies to other traits. In a maxi-
mally idiosyncratic fitness landscape such as the one described by 
the house-of-cards model33, fitness values (circle sizes in Fig. 1d)  
of neighbouring genotypes connected through single mutations are 
uncorrelated. The fitness of a neighbouring genotype of a high- or 
low-fitness focal genotype is expected to be the same. Hence, the 
fitness difference between a neighbouring genotype (grey circle) 
and the focal genotype (black circle) is expected to be less posi-
tive or more negative as the fitness of the focal genotype rises. In 
other words, beneficial mutations are less beneficial and deleteri-
ous mutations are more deleterious on fitter genotypes, causing 
diminishing returns and increasing costs, respectively. These 
arguments apply not only to the effects of the same mutation on 
different genetic backgrounds but also to the effects of different 
mutations on different backgrounds. That is, an arbitrary mutation 
on a relatively fit background is expected to be less beneficial or 
more detrimental than another arbitrary mutation on a relatively 
unfit background. Under the foregoing model of g, one can math-
ematically prove that, in the presence of idiosyncrasy of at least 
one interactive term, the correlation between the fitness effect of 
a mutation and the background fitness is negative, for both the 
same and different mutation(s) (see Methods). In the case of differ-
ent mutations, among-site or among-state variation in the additive 
effect further contributes to the negative correlation (see Methods). 
Importantly, all of the above occurs even with no bias towards 
positive or negative epistasis in the fitness landscape and no fitness  
estimation error.

Idiosyncratic epistasis causes the trends of diminishing returns 
and increasing costs. To examine whether the extent of idio-
syncratic epistasis in an actual fitness landscape is sufficient to 
explain the observed diminishing returns and increasing costs, we 
simulated a series of 16 fitness landscapes with n = 16 binary sites, 
under the n-order model of g. In the kth landscape in the series 
(1 ≤ k ≤ 16), we considered up to the kth order of interaction. That 
is, each term of effect from the first to the kth-order interaction is 
a random variable independently drawn from the standard normal 
distribution, whereas all other terms are set to 0. When k rises from 
1 to 16, Iid increases from 0 to 0.69 (Fig. 2a), which is close to the 
theoretically predicted value (see Methods). In all simulated land-
scapes except the one with Iid = 0, most if not all mutations exhibit 
a negative Pearson’s correlation between fitness effect and back-
ground fitness (boxes in Fig. 2a). In addition, the larger the k and Iid, 
the more negative the correlations (boxes in Fig. 2a), supporting the 
role of idiosyncratic epistasis in creating the negative correlations. 
For comparison, 87.8% of mutations from the yeast tRNA fitness 
landscape show a negative correlation between fitness effect and 
background fitness (Fig. 2b). A similar trend is seen in other empir-
ical phenotype landscapes (Extended Data Fig. 2a,b). Separating 
mutations that are beneficial or detrimental on the wild-type back-
ground or an arbitrary background reveals the familiar patterns of 
diminishing returns and increasing costs in both the simulated and 
empirical landscapes (Extended Data Fig. 3).
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Furthermore, the effects of different mutations also negatively 
correlate with background fitness in the simulated landscapes 
(green diamonds in Fig. 2a; see Methods), as well as in the tRNA fit-
ness landscape (Fig. 2c) and other empirical phenotype landscapes 
(Extended Data Fig. 2c,d). As mentioned, the negative correlation  
in the simulated landscape with Iid = 0 (leftmost green diamond 
in Fig. 2a) is due to the contribution from the among-site and 
among-state variation in the additive effect; in the absence of this 
variation, all genotypes are equally fit, so the correlation disappears.

Idiosyncratic epistasis causes slowing fitness decreases in muta-
tion accumulation. When random mutations accrue in a relatively 
fit population in the near absence of selection, population fitness is 
expected to decline. Because idiosyncratic epistasis renders random 
mutations on average less deleterious on relatively unfit genotypes 
than on relatively fit genotypes, the fitness decrease of the popula-
tion is expected to decelerate during mutation accumulation until it 
reaches the mean fitness of all genotypes in the landscape, around 
which the fitness should subsequently fluctuate. We confirmed this 
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prediction in the simulated n-order landscapes. As k and Iid increase, 
the slowing curvature becomes more prominent (Fig. 3a). A change 
in mutational supply explains why the fitness decline is decelerating 
even when Iid = 0 (see Methods), and as expected this trend dimin-
ishes as n rises (Extended Data Fig. 4). For comparison, decelerating 
fitness declines are apparent during simulated mutation accumula-
tions in the tRNA fitness landscape (Fig. 3b) and other empirical 
phenotype landscapes (Extended Data Fig. 5).

The decrease in fitness to the mean of all genotypes during muta-
tion accumulation is observed in the n-order landscapes (Fig. 3a) 
and RNA stability landscape (Extended Data Fig. 5b), while the 
average mutation accumulation trajectory in tRNA (Fig. 3b) and 
green fluorescent protein (GFP) (Extended Data Fig. 5a) landscapes 
fluctuates above the mean of all genotypes. This latter phenomenon 

is due to preferential sampling of genotypes close to the wild-type in 
the experimental data, trapping many simulated mutation accumu-
lation trajectories around the wild-type. The former two theoreti-
cally simulated/calculated landscapes do not have such biases.

Idiosyncratic epistasis causes slowing fitness gains in adaptation. 
Idiosyncratic epistasis, in combination with certain distributions 
of genotype fitness or interactive effects, creates the phenomenon 
of decelerating fitness gains during adaptation. In a solely additive 
landscape with Iid = 0, each adaptive trajectory is basically a ran-
dom ordering of the beneficial mutations. Thus, the mean fitness 
increase of every step is the mean of the effect of all beneficial muta-
tions, leading to a linear average trajectory regardless of the fitness 
distribution (Fig. 4a). In an idiosyncratic landscape with Iid > 0, the 
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mutation fixed at each step during adaptation is a random draw 
from beneficial mutations instead of all mutations. Because of this 
bias, the shape of the adaptive trajectory, unlike that of mutation 
accumulation, is dependent on the distribution of genotype fit-
ness or interactive effects. For example, in a house-of-cards model  
(a special case of n-order landscapes with only the highest-order 

interaction term), when the fitness of all genotypes is gamma dis-
tributed with a shape parameter of >1, =1 or <1 (Extended Data 
Fig. 6a), fitness rises sublinearly, linearly or superlinearly with the 
number of mutations accumulated, respectively (Extended Data 
Fig. 6b) (see also ref. 34). Although not sufficient for creating a 
decelerating adaptive trajectory, idiosyncrasy causes a decelerating  
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trajectory in a wide range of full n-order landscapes, including, for 
example, those with normal- (Fig. 4a), gamma- (Extended Data  
Fig. 6c) and beta-distributed (Extended Data Fig. 6d) interaction 
effects. As expected, adaptation slows more drastically with greater 
Iid (Fig. 4a and Extended Data Fig. 6c,d). Simulated adaptation 
also decelerates in the tRNA fitness landscape (Fig. 4b), as well as 
in other empirical phenotype landscapes (Extended Data Fig. 7),  
suggesting that the empirical cases fulfil both the idiosyncrasy and 
fitness distribution requirements.

Discussion
In summary, we proposed a simple theory that uses the idiosyncrasy 
of epistasis to explain some of the most commonly observed pat-
terns of mutational effects and evolutionary trajectories. Phenotype 
landscapes of a variety of genes and taxa confirm our assumption 
of idiosyncratic epistasis. In contrast with common intuition, our 
work shows that diminishing returns and decelerating adaptations 
do not suggest a bias towards negative epistasis in the underlying 
fitness landscape or a concave landscape. Similarly, increasing costs 
and slowing fitness declines during mutation accumulation do not 
indicate a bias towards positive epistasis or a convex landscape. 
Thus, our theory resolves the uphill–downhill paradox.

Although the idiosyncrasy of epistasis is a major characteristic of 
empirical phenotype landscapes (Fig. 1c), biological interactions are 
not completely idiosyncratic. Rather, idiosyncratic epistasis should 
serve as a null model for the role of epistasis in mutational effects 
and evolution. For example, the relationship between the muta-
tional robustness of a genotype (that is, fitness insensitivity to muta-
tion) and its adaptability/evolvability to environmental challenges 
is debated35–37. Our theory reveals an intrinsic positive correlation 
between robustness and adaptability due to idiosyncratic epistasis, 
because, as the fitness of a genotype rises, deleterious mutations are 
more detrimental (that is, there is lower robustness) and advanta-
geous mutations are less beneficial (that is, there is lower adaptabil-
ity). Deviations from this null expectation may reveal interesting 
forms of epistasis beyond idiosyncrasy. Similarly, because slow-
ing fitness decreases during mutation accumulation naturally 
emerge from idiosyncratic epistasis, such observations need not 
be explained by selection for “genomic buffering against the fitness 
reduction caused by accumulated mutations”13. Rather, when this 
trend is absent or when the opposite trend is observed, selection for 
mutational robustness of the wild-type may be invoked38.

A major question is the relative contributions of idiosyncrasy 
and various biological mechanisms to the universal uphill/downhill 
observations in empirical data. Clonal interference39 and changes 
in mutational supply40 probably contribute to slowing adapta-
tion. Interestingly, diminishing returns contribute more greatly 
than changes of mutational supply to slowing adaptation even in 
a constant environment41, implying the importance of idiosyn-
crasy. Comparing adaptations of sexually and asexually reproduc-
ing organisms may provide a way to test the relative importance of 
clonal interference and idiosyncrasy. We emphasize that the high yet 
incomplete idiosyncrasy we find means that there is room for the 
action of various biological mechanisms. For example, the arrange-
ment of enzymes in a metabolic pathway obviously has effects on 
the epistasis of mutations of enzyme genes21, and biological systems 
do show modularity42. It will be important to develop the idiosyn-
cratic epistasis theory into a model that can be fit to empirical data 
and compared directly with other models. Given that the idiosyn-
cratic epistasis theory makes only one assumption (that is, epista-
sis is at least somewhat idiosyncratic), such work will probably be 
fruitful in illuminating the causes and consequences of epistasis in 
a wide variety of systems.

How does the idiosyncrasy of epistasis arise from the underlying 
deterministic biological interactions? The n-order model reveals 
that the number of interactive terms determining the phenotype 

of a genotype is potentially astronomical and that the same muta-
tion differentially alters a substantial fraction of these terms in even 
slightly different genotypes. Consequently, it is difficult to predict 
the mutational effect in any particular genotype despite the under-
lying deterministic biological interactions, much like the apparently 
random outcome of a die roll that is deterministically shaped by 
myriad factors such as the movement of air molecules. That the 
universal trends of mutational effects and evolutionary trajectories 
emerge from this randomness due to idiosyncratic epistasis is no 
more surprising than the tendency of observing a smaller number 
in a second roll of a die when the first roll yields a five.

Methods
Number of terms of phenotypic effects altered by a mutation. Let g be the 
Malthusian fitness (fitness for short) of a genotype in an environment and  
let n be the number of nucleotide sites in a genome that are relevant to g.  
Here, g equals the sum of the additive fitness effect of every site (that is, the 
first-order interaction), the interactive effect of every pair of sites (that is,  
the second-order interaction), the interactive effect of every triplet of sites 

(that is, the third-order interaction), and so on. That is, g contains n
k

� �

I

 terms 

of effects of the kth order of interaction (1 ≤ k ≤ n), for a total of 2n − 1 terms. 
Among these terms, 2n−1 terms involve any particular site. Thus, a mutation at a 
single site potentially changes 2n−1/(2n − 1) = ~50% of all terms making up g.

Differentially altered terms of effects in two genotypes caused by the same 
mutation. When the same mutation of allele P changing to Q at site k occurs 
in two different genotypes that differ at m sites (k is not one of the m sites), 
the differentially altered terms of effects in these genotypes must involve site 
k and at least one of the m sites, and may also involve site(s) identical between 
the two genotypes. The total number of differentially altered terms equals the 
number of terms involving k and other site(s) that may or may not be identical 
between the two genotypes, minus the number of terms involving k and other 
site(s) that are identical between the two genotypes. The resulting number is 
(2n−1 − 1) − (2n−m−1 − 1) = (2m − 1)2n−m−1. When m = 1, the above number is 2n−2. 
That is, up to 2n−2/(2n − 1) = ~25% of terms are differentially altered by the same 
mutation in two genotypes that differ at only one site. When m = n − 1, the 
above number is 2n−1 – 1. That is, up to (2n−1 − 1)/(2n − 1) = ~50% of terms are 
differentially altered by the same mutation in two maximally different genotypes.

The fitness effect of a given mutation is negatively correlated with background 
fitness. Let us consider the n-order landscape model and focus on the mutation 
from the P allele to the Q allele at site k of the genome. We examine the fitness 
effect of this mutation on different genetic backgrounds. Let X represent any 
genotype with the P allele at site k. Among them, xi is the ith genotype whose 
Malthusian fitness is Rxi

I
. Rxi
I

 can be written as Rxi ¼ Axi þ Ixi þ I0xi
I

, where Axi
I

 is 
the sum of additive (that is, first-order interactive) effects, Ixi

I
 is the sum of the 

second- to nth-order interactive effects involving the focal site k, and I0xi
I

 is the sum 
of the second- to nth-order interactive effects that do not involve site k.

Similarly, let Y represent any genotype with the Q allele at site k. For 
each genotype xi, we have a corresponding genotype yi that is identical to 
xi except that site k now has the Q allele. Ryi

I
, the fitness of yi, can be written 

as Ryi ¼ Ayi þ Iyi þ I0yi
I

, where Ayi
I

 is the sum of additive (that is, first-order 
interactive) effects, Iyi

I
 is the sum of the second- to nth-order interactive effects 

involving site k, and I0yi
I

 is the sum of the second- to nth-order interactive effects 
that do not involve site k.

Note that the difference in the additive effect between alleles P and Q is a 
constant that is not influenced by sites other than k. That is, Ayi � Axi ¼ C

I
. 

Therefore, we have:

Cov AY ;AXð Þ ¼ 1
N

PN
i¼1

Ayi � E AYð Þ
� 

Axi � E AXð Þð Þ

¼ 1
N

PN
i¼1

Axi þ C � E AX þ Cð Þð Þ Axi � E AXð Þð Þ

¼ 1
N

PN
i¼1

Axi � E AXð Þð Þ Axi � E AXð Þð Þ ¼ Var AXð Þ

Here, N is the total number of pairs of (xi, yi) and equals 4n−1 for a genome with n 
sites each with four states, Cov stands for covariance and Var stands for variance.

Also note that, because xi and yi are the same except at site k, I0xi ¼ I0yi
I

.  
Let Cor(IX,IY) be the Pearson correlation between IX and IY. We have:

Cor IX ; IYð Þ ¼ Cov IX ; IYð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var IXð ÞVar IYð Þ

p
≤1

I
. Hence, 

Cov IX ; IYð Þ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var IXð ÞVar IYð Þ

p

I
. Under the reasonable assumption that  

the corresponding interactive terms of xi and yi are sampled from the same 
distribution, Var(IX) and Var(IY) are expected to be equal. Hence, 
Cov IX ; IYð Þ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var IXð ÞVar IXð Þ

p
¼ Var IXð Þ

I
. Thus, Cov IX ; IYð Þ ¼ Var IXð Þ

I
 when 
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IX and IY have a correlation of 1; otherwise, Cov IX ; IYð Þ<Var IXð Þ
I

. When  
epistasis is to some extent idiosyncratic, IY does not correlate perfectly with IX, 
resulting in Cov IX ; IYð Þ<Var IXð Þ

I
.

Under the assumption of independence among the interactive terms of a  
genotype, we have Cov(mutational effect, fitness of the background genotype) =  
Cov RY � RX ; RXð Þ
I

 = Cov AY � AXð Þ þ IY � IXð Þþð
I

I0Y � I0X
� �

; AX þ IX þ I0X
�

I
 =  

Cov C;AXð Þ þ Cov IX ; IYð Þ � Var IXð Þ þ Cov 0; I0X
� �

I
 = Cov IX ; IYð Þ � Var IXð Þ<0

I
.  

This mathematical result means that, when epistasis is to some extent idiosyncratic, 
for any given mutation, we expect a negative correlation between the background 
fitness and mutational effect, which is exactly what diminishing returns of 
beneficial mutations and increasing costs of deleterious mutations are. The above 
result holds when fitness is replaced with any phenotypic trait, as long as the trait 
value of each genotype can be expressed as the sum of the 2n − 1 terms of effects.

Mutational effect is generally negatively correlated with background fitness. 
Below, we show that the preceding result about a given mutation also applies 
to different mutations. That is, we expect a negative correlation between the 
mutational effect and background fitness even when different mutations 
are considered. Rt, the Malthusian fitness of genotype t, can be expressed by 
Rt ¼ I1t þ I2t þ    þ Int þ I1;2t þ I1;3t þ    þ In;n�1

t þ    þ I1;2;;nt
I

. Here, the 
superscript indicates the site(s) involved in an additive or interactive term. For 
instance, It

2 stands for the additive effect of site 2 and I1;2t
I

 stands for the interactive 
effect between sites 1 and 2.

Let X represent an arbitrary genotype and Y represent another genotype that 
differs from X by a particular mutation named W that occurs at site k. We have:

RX ¼ I1X þ I2X þ    þ InX þ I1;2X þ I1;3X þ    þ In�1;n
X þ    þ I1;2;;nX and

RY ¼ I1Y þ I2Y þ    þ InY þ I1;2Y þ I1;3Y þ    þ In�1;n
Y þ    þ I1;2;;nY :

In the above, all corresponding terms between IX and IY are equal except for the 
terms involving k. So,

RY � RX ¼ IkY � IkX
� �

þ I1;kY � I1;kX

� �
þ   

þ In;kY � In;kX

� �
þ    þ I 1;2;;nð Þ;k

Y � I 1;2;;nð Þ;k
X

� �
:

Under the assumption that all I terms in an R are independent of one  
another, Cov(mutational effect, background fitness) = Cov RY � RX ;RXð Þ

I
 = 

Cov IkY � IkX ; I
k
X

� �
þ Cov I1;kY � I1;kX ; I1;kX

� �
þ   

I

 + 

Cov In;kY � In;kX ; In;kX

� �
þ    þ Cov I 1;2;;nð Þ;k

Y � I 1;2;;nð Þ;k
X ; I 1;2;;nð Þ;k

X

� �
:

I According to the law of total variance and the law of total covariance, we can 
expand each term in the above equation. Let us use the second-order interaction 
between site s and site k as an example. 

Cov Is;kY � Is;kX ; Is;kX

� �

I

 = Cov Is;kY ; Is;kX

� �
� Var Is;kX

� �

I

 = 

E Cov Is;kY ; Is;kX jW
� �� �

þ Cov E Is;kY jW
� �

; E Is;kX jW
� �� �

� E Var Is;kX jW
� �� �

� Var E Is;kX jW
� �� �

 = E Cov Is;kY ; Is;kX jW
� �

� Var Is;kX jW
� �� �

þ Cov E Is;kY � Is;kX jW
� �

; E Is;kX jW
� �� �

I

.

As shown in the section about a given mutation, as long as there 
is some degree of idiosyncrasy, Cov Is;kY ; Is;kX jW

� �
<Var Is;kX jW

� �

I

. 

So, E Cov Is;kY ; Is;kX jW
� �

� Var Is;kX jW
� �� �

<0

I

. Furthermore, 

Cov E Is;kY � Is;kX jW
� �

; E Is;kX jW
� �� �

¼ 0

I

, because E Is;kY � Is;kX jW
� �

I

 = 0 under 

the reasonable assumption that, given W, Is;kX
I

 and Is;kY
I

 follow the same distribution. 
Hence, Cov Is;kY � Is;kX ; Is;kX

� �
<0

I

. The same conclusion applies to all terms except 

the first-order interactive (additive) term, which is

Cov IkY � IkX ; I
k
X

� �
¼ E Cov IkY ; I

k
X jW

� �
� Var IkX jW

� �� �

þ Cov E IkY � IkX jW
� �

; E IkX jW
� �� �

:

Because additive effects are independent of the genetic background, given 
W, IkY

I
 and IkX

I
 are both fixed and are two randomly sampled values from 

the same distribution. Hence, Cov IkY ; I
k
X jW

� �
¼ 0

I
 and Var IkX jW

� �
¼ 0

I
. So, 

E Cov IkY ; I
k
X jW

� �
� Var IkX jW

� �� �
¼ 0

I
. E IkY jW

� �
¼ IkY jW

I
 and E IkX jW

� �
¼ IkX jW

I
. 

As W varies, IkY jW
I

 and IkX jW
I

 are two random variables from the same distribution. 
They have the same variance and are not usually completely correlated. So,

Cov E IkY � IkX jW
� �

;E IkX jW
� �� �

¼ Cov IkY � IkX W; IkX
�� ��W

� �

¼ Cov IkY ; I
k
X jW

� �
� Var IkX jW

� �
<0:

Under the special case when all additive terms are equal, 
Cov E IkY � IkX jW

� �
; E IkX jW

� �� �
¼ 0

I
.

Thus, Cov(mutational effect, background fitness) = 

E Cov IkY ; I
k
X jW

� �
� Var IkX jW

� �� �
þ Cov E IkY � IkX jW

� �
; E IkX jW

� �� �

I
 + 

E Cov I1;kY ; I1;kX jW
� �

� Var I1;kX jW
� �� �

þ Cov E I1;kY � I1;kX jW
� �

; E I1;kX jW
� �� �

I

 + 

   þ E Cov In;kY ; In;kX jW
� �

� Var In;kX jW
� �� �

þ Cov E In;kY � In;kX jW
� �

;E In;kX jW
� �� �

I

 

+    þ E Cov I 1;2;;nð Þ;k
Y ; I 1;2;;nð Þ;k

X jW
� �

� Var I 1;2;;nð Þ;k
X jW

� �� �

I

 + 

Cov E I 1;2;;nð Þ;k
Y � I 1;2;;nð Þ;k

X jW
� �

; E I 1;2;;nð Þ;k
X jW

� �� �

I

 = 

Cov IkY � IkX W; IkX
�� ��W

� �
þ E Cov I1;kY ; I1;kX jW

� �
� Var I1;kX jW

� �� �

 +    þ E Cov In;kY ; In;kX jW
� �

� Var In;kX jW
� �� �

þ   
I

 +

E Cov I 1;2;;nð Þ;k
Y ; I 1;2;;nð Þ;k

X jW
� �

� Var I 1;2;;nð Þ;k
X jW

� �� �
<0

I

. Therefore, in the 
n-order model, mutational effect is negatively correlated with background fitness 
even for different mutations. As shown in the above mathematical derivation, this 
negative correlation has two sources: unequal additive effects and idiosyncratic 
epistasis. Given the same additive effects, increasing the idiosyncrasy in epistasis 
strengthens the negative correlation. As in the preceding section, the result here 
applies to any phenotypic trait as long as the trait value of a genotype can be 
expressed as the sum of the 2n − 1 terms of effects.

Expected idiosyncrasy index under the n-order landscape model. The variance 
of the effect of a particular mutation across all genetic backgrounds can be 
calculated as follows. Let X represent an arbitrary genotype and Y represent 
another genotype that differs from X at site k only. We have shown earlier that:

RX ¼ I1X þ I2X þ    þ InX þ I1;2X þ I1;3X þ    þ In�1;n
X þ    þ I1;2;;nX and

RY ¼ I1Y þ I2Y þ    þ InY þ I1;2Y þ I1;3Y þ    þ In�1;n
Y þ    þ I1;2;;nY :

In the above, all corresponding terms between IX and IY are equal except for the 
terms involving k. So,

RY � RX ¼ IkY � IkX
� �

þ I1;kY � I1;kX

� �
þ   

þ In;kY � In;kX

� �
þ    þ I 1;2;;nð Þ;k

Y � I 1;2;;nð Þ;k
X

� �

and Var Ry � Rx
� �

¼ Var IkY � IkX
� �

þ Var I1;kY � I1;kX

� �
þ   

I

 + 

Var In;kY � In;kX

� �
þ    þ Var I 1;2;;nð Þ;k

Y � I 1;2;;nð Þ;k
X

� �
:

I

 If we assume that all 
interactive terms for X and Y are independent with the same variance σ2, 
Var RY � RXð Þ ¼ 2nσ2

I
.

If there are M states at each site, among the kth-order interactive terms, 
n
k

� �
1=Mð Þk

I

 terms are expected to be the same between two random genotypes. 

One can show that 
Pn
k¼1

n
k

 
1=Mð Þk¼

Pn
k¼1

n!
k! n�kð Þ!  1=Mð Þk

Pn
k¼1

nk
k!  1=Mð Þk e

n
M

I

. 

Thus, two random genotypes are expected to differ by approximately 2n − 1 – en/M 
terms. Hence, the variance of the fitness difference between two random genotypes 
is Var RY � RXð Þ ¼ 2ð2n � 1� e

n
MÞσ2

I
. Because M ≥ 2, en

M

I
 < 2n. So, when n is large, 

Var(RY – RX) is approximately 2n+1σ2. Therefore, the idiosyncrasy index becomes ffiffiffiffi
2n

p
σffiffiffiffiffiffiffi

2nþ1
p

σ
¼ 1ffiffi

2
p

I

 = ~0.71. Our numerical finding (the most right red dot in Fig. 2a) 
confirms this result.

Mutational supply and evolutionary trajectories. During adaptation, if the  
supply of beneficial mutations diminishes as the fitness of a population rises,  
the speed of population fitness increase per unit of time will decline. However,  
if the speed of fitness increase is measured per beneficial mutation accrued as in 
the present study, the reducing supply of beneficial mutations will not reduce the 
speed of fitness increase.

During mutation accumulation in the near absence of selection, as the 
population fitness declines, the supply of beneficial mutations should increase and 
the supply of deleterious mutations should decrease. Thus, even under a purely 
additive model, the speed of population fitness decrease slows. However, when 
only the first few mutations accrued are examined, this phenomenon of slowing 
fitness decreases should be minimal under the purely additive model unless the 
number of possible mutations is very limited.

Empirical phenotype landscapes. An unbiased search for phenotype landscape 
data published between 2000 and 2019 was performed using Google Scholar with 
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words such as “epistasis”, “fitness landscape” or “genetic interaction”. A total of  
18 datasets were found for which quantitative phenotype values were published or 
could be calculated without extensive analysis (for example, studies reporting only 
sequencing reads were excluded) and which included genotypes with at least two 
mutations compared with the reference genotype. Measured phenotypes included 
protein function, such as log[fluorescence], log[Wrightian fitness] or growth rate, 
and colony size. For landscapes reporting genotypes with nucleotide mutations, 
all 12 classes of single mutations were considered. For landscapes reporting 
genotypes with amino acid mutations, all 380 mutations between any two amino 
acids were considered as single mutations. Genotypes with fitness at the minimum 
detection limit (for example, non-fluorescent GFP genotypes) or that were lethal 
or non-growing (for example, tRNA genotypes with Wrightian fitness relative to 
the wild-type = 0.5) were excluded. A final set of 12 studies with at least ten single 
mutations and at least an average of ten fitness effects measured per mutation 
were used for further analysis. Supplementary Table 1 lists the basic information 
of these phenotype landscapes. The original study of the tRNA fitness landscape 
reported Wrightian fitness relative to the wild-type; we computed Malthusian 
fitness = log[Wrightian fitness] in the present study.

To investigate the evolution of an arbitrary RNA that has a complex phenotype 
with no measurement error, we mapped the RNA stability landscape of RNAs  
of 72 nucleotides. Similar to ref. 36, we defined the fitness of a sequence as the 
absolute value of the minimum free energy of its most stable secondary structure, 
calculated using ViennaRNA (https://www.tbi.univie.ac.at/RNA/). The starting 
sequence was taken from a yeast tRNA sequence. Mutants were randomly created 
on each of two million random background genotypes, and this set of genotypes 
was used for subsequent analyses.

Simulating idiosyncratic fitness landscapes. We simulated a series of 16-site 
fitness landscapes under n-order models with two states (A/T) per site, including 
all 65,536 genotypes. The fitness of a genotype is determined by additive effects 
(referred to as first-order interactions) and interactive effects. For the kth-order 
interaction (1 ≤ k ≤ 16), there are 16!

ð16�kÞ!k!
I

 interactive terms. For each of these terms, 
there are 2k possible state combinations. The fitness effect of each state combination 
of each interaction term for each order of interaction is drawn independently from 
the standard normal distribution, and the fitness of the genotype concerned is the 
sum of all of these terms. Sixteen landscapes were made by including successively 
increasing orders of interactions. For instance, the first landscape contains only 
first-order interactions (purely additive); the second landscape contains only first- 
and second-order interactions; and the sixteenth landscape contains all orders of 
interactions. In each landscape, fitness values are linearly scaled to the interval of 
[0, 1]. As expected, Iid increased with the number of orders of interactions included 
(orange circles in Fig. 2a), because the numerator in the formula of Iid increased 
whereas the denominator stayed more or less constant. In each of these landscapes, 
epistasis between mutations is symmetrically distributed, with the mean equal to 0. 
We also simulated additive landscapes with larger n values to examine the linearity 
of fitness decreases during mutation accumulation.

Estimating the idiosyncrasy index. For each single mutation in a fitness 
landscape, we calculated its fitness effects on all genetic backgrounds available. 
For each mutation, we also derived a control set of fitness effects by randomly 
sampling (with replacement) the same number of pairs of genotypes from the 
landscape as used for the mutation and computing the fitness difference for each 
pair. We then calculated the s.d. of fitness effects and range of fitness effects for 
each mutation and its control dataset. For each mutation, we calculated the ratio 
in the s.d. (or range) between the actual data and the control data. The average 
ratio across all single mutations is the Iid of the landscape, and the error bars in 
Fig. 1c are the s.e.m. The same method is used to estimate Iid of other phenotype 
landscapes. Although empirical phenotype landscape data typically include only 
a small fraction of non-randomly sampled genotypes and their phenotypes, this 
non-random sampling is not expected to substantially affect Iid estimation, because 
both the variation of the effect of a mutation and the variation in the control data 
are estimated using the available landscape data. The theoretical minimum and 
maximum Iid for an individual mutation are, asymptotically, 0 and 1, respectively. 
However, because we use randomly sampled mutations to empirically estimate Iid, 
the value of Iid may be above 1 in some cases.

If a mutation’s range of effects in different backgrounds crosses 0, the mutation 
exhibits sign epistasis. For each landscape, we calculated the proportion of 
mutations that exhibited sign epistasis, excluding mutations with little reported 
information (that is, those that appeared on fewer than five backgrounds).

Examining the correlation between background fitness and mutational effect. 
For the simulated n-order landscapes and empirical landscapes (tRNA fitness, 
GFP activity and RNA stability), Pearson’s correlation coefficient was calculated 
between the mutational effect on a particular trait and the background trait value 
for each single mutation. Mutations appearing on fewer than four backgrounds 
were excluded. Pearson’s correlation coefficient was also calculated between all 
mutational effects and background trait values for each landscape.

In the tRNA fitness landscape, the fitness of each genotype was measured 
in six replicates. To exclude artificial correlation due to measurement error, the 

background fitness of each case of a single mutation was calculated using the mean 
fitness value from replicates 1–3, while the mutational effect was computed using 
mean fitness from replicates 4–6.

Additionally, two mutations that are the reverse of each other on the same 
background can automatically create a negative correlation between all mutational 
effects and background fitness. Hence, in each landscape where this could occur, 
we randomly chose a mutation or its reversion when pooling all mutations together 
(Fig. 2a (green diamonds), Fig. 2c and Extended Data Fig. 2c,d).

For analysis of diminishing returns and increasing costs, mutations  
were deemed beneficial or detrimental depending on their effect on the  
wild-type genotype in GFP and tRNA, or a random arbitrary genotype in RNA 
stability, or on a genotype with a fitness value closest to the average fitness  
in the n-order landscapes.

Simulating evolutionary trajectories in mutation accumulation. For each 
empirical landscape, mutation accumulation from an initial genotype was 
simulated by randomly choosing single mutations until the resulting genotype was 
non-functional (GFP), or for a maximum of ten mutational steps (tRNA) or 50 
mutational steps (RNA stability). For all plots concerning mutation accumulation, 
the mean phenotype value of the landscape was calculated from all genotypes.

For the GFP landscape, genotypes were not allowed to be revisited within a 
trajectory. If a mutation accumulation trajectory was part of another simulated 
trajectory, the shorter trajectory was discarded. A total of 3,069 mutation 
accumulation trajectories were simulated from each of 3,069 initial genotypes 
with activity equal to or greater than that of the wild-type. In the tRNA fitness 
landscape, 10,000 mutation accumulation trajectories were simulated starting 
from the wild-type genotype. In the n-order fitness landscapes, 10,000 mutation 
accumulation trajectories were simulated starting from the genotype with 
fitness closest to the 90th percentile. For the RNA stability landscape, a total of 
350 mutation accumulation trajectories were simulated starting with the final 
genotypes from the simulated adaptations.

Simulating adaptive trajectories. For each empirical landscape, adaptation 
from an initial genotype was simulated by randomly choosing a single beneficial 
mutation, which increased the value of the trait concerned, until no more 
single beneficial mutations were available. A total of 5,000 adaptive trajectories 
starting from 3,441 initial genotypes chosen from the bottom 15% of genotypes 
(activity ≤ −0.4) were simulated for the GFP landscape. A total of 350 adaptive 
trajectories starting from 350 initial genotypes chosen from the bottom 0.0175% 
of genotypes in the RNA stability landscape were simulated. In the tRNA fitness 
landscape, we simulated five adaptive trajectories starting from each genotype  
with fitness = 0.5; trajectories longer than two steps were retained, totalling  
15,878 trajectories. In the n-order fitness landscapes, adaptations start from 
all genotypes in the bottom 20% of fitness distribution; among ten adaptation 
simulations starting from each genotype, trajectories equal to or longer than two 
steps were retained.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data analysis and simulations for all landscapes except the tRNA and model 
landscapes were performed using R version 3.5.2. Analysis and simulations for  
the tRNA and model landscapes were performed using Python version 3.6.9.  
All figures were made with the matplotlib package in Python and Keynote.  
New data are available at https://github.com/lyonsdm/idiosyncrasy.

code availability
Code is available at https://github.com/lyonsdm/idiosyncrasy.
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Extended Data Fig. 1 | the high idiosyncrasy indices (Iid) observed are not due to phenotype measurement errors or the use of standard deviation (SD) 
instead of range of mutational effects. a, SD-based Iid of the yeast trNA fitness landscape is insensitive to the number of experimental replicates used in 
the fitness estimation. Boxplots show the distribution of Iid values of 828 single mutations in the trNA landscape, calculated based on different numbers of 
replicates. The lower and upper edges of a box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line inside the box indicates 
the median (md), the whiskers extend to the most extreme values inside inner fences, md ± 1.5(qu3 − qu1), and the grey dots represent values outside 
the inner fences (outliers). Violet dots show mean Iid of all mutations calculated based on respective numbers of replicates. b, range-based Iid for various 
phenotype landscapes. Error bars show standard errors. Detailed information of each landscape is provided in Supplementary Table 1. Shown in red is the 
fraction of mutations exhibiting sign epistasis in each phenotype landscape.
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Extended Data Fig. 2 | Negative correlation between mutational effect and background phenotype in gFP and rNa stability landscapes. a, Distribution 
of Pearson’s correlation coefficient (r) between mutational effect and background phenotype for individual mutations in the GFP landscape. b, Distribution 
of r for individual mutations in the rNA stability landscape. c, relationship between background phenotype and mutational effect for all mutations in the 
GFP landscape. d, relationship between background phenotype and mutational effect for all mutations in the rNA stability landscape. MFE, minimum 
free energy. The red line depicts the running mean in non-overlapping X-axis bins of width = 0.02 and 2 in (c, d), respectively, in all bins with more than 10 
data points. There is no measurement error in the rNA stability landscape. Shared measurement error between mutational effect and background fitness 
cannot be controlled for in GFP as replicate fitness measurements are not available. For each mutation and its reverse, we considered a random one of 
them in (c, d).

Nature ecoLogy & evoLutIoN | www.nature.com/natecolevol

http://www.nature.com/natecolevol


Articles NaTurE ECology & EvoluTioNArticles NaTurE ECology & EvoluTioN

Extended Data Fig. 3 | Patterns of correlation between mutational effect and background fitness/phenotype for individual beneficial or deleterious 
mutations in various landscapes. a, Boxplots showing distributions of correlations in a series of n-order landscapes of 16 sites (where the highest order 
of nonzero interaction is indicated on the X-axis) for beneficial (blue) and deleterious (red) mutations, respectively. The lower and upper edges of a 
box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line inside the box indicates the median (md), the whiskers extend 
to the most extreme values inside inner fences, md ± 1.5(qu3 − qu1), and the dots represent values outside the inner fences (outliers). b-d, Frequency 
distributions of correlations for individual beneficial mutations (blue) and deleterious mutations (red) in the trNA (b), GFP (c), and rNA stability (d) 
landscapes. Whether a mutation is beneficial or deleterious is determined in reference to the wild-type (trNA and GFP) or an arbitrary reference genotype 
(n-order and rNA stability). The wider distribution for deleterious than beneficial mutations is at least in part due to the larger number of deleterious than 
beneficial mutations.
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Extended Data Fig. 4 | average fitness trajectories of mutation accumulation simulated in various n-order additive landscapes (k = 1) with different 
numbers of sites (n). The mean trajectories are scaled so that the minimum fitness appearing in the trajectory is 0 and the maximum is 1 to allow direct 
comparison.
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Extended Data Fig. 5 | Fitness declines decelerate during mutation accumulation as a result of idiosyncratic epistasis. a, A total of 5000 fitness 
trajectories of mutation accumulation simulated in the GFP landscape, with the average trajectory shown in black, at each step when the trajectory 
number exceeds 10. b, A total of 350 fitness trajectories of mutation accumulation simulated in the rNA stability landscape, with the average trajectory 
shown in black. The dotted lines indicate the mean phenotypic value of all genotypes in the landscape, excluding non-active genotypes in the GFP 
landscape. For comparison, the dashed line in (a) or (b) represents the predicted linear decline given the slope in the first mutational step.
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Extended Data Fig. 6 | Idiosyncratic epistasis is necessary but not sufficient to cause decelerating adaptations. a, Gamma distributions of genotype 
fitness for house-of-cards landscapes, with different values of the gamma shape parameter α. b, Theoretically computed mean fitness trajectories of 
adaptation on landscapes in (a) with corresponding colors. c, Average adaptive trajectories starting from the genotype with the lowest fitness (0), 
simulated in a series of n-order landscapes of 16 sites where each nonzero interaction term of each genotype is drawn from a gamma distribution of α = 1. 
d, Average adaptive trajectories starting from the genotype with the lowest fitness (0), simulated in a series of n-order landscapes of 16 sites where each 
nonzero interaction term of each genotype is drawn from a beta distribution with a=b=0.25. For each landscape in (c) and (d), the distribution of epistasis 
between mutations is symmetrical with mean equal to 0.
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Extended Data Fig. 7 | adaptation slows in empirical phenotype landscapes. a, A total of 5000 adaptive trajectories simulated in the GFP landscape, 
with the average trajectory shown in black, at each step when the trajectory number exceeds 10. b, A total of 350 adaptive trajectories simulated in the 
rNA stability landscape, with the average trajectory shown in black, at each step when the trajectory number exceeds 10. For comparison, the dashed line 
in (a) or (b) represents the predicted linear increase given the slope in the first mutational step.
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