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Abstract

It has been suggested that, due to the structure of the genetic code, nonsynonymous transitions are less likely than
transversions to cause radical changes in amino acid physicochemical properties so are on average less deleterious. This
view was supported by some but not all mutagenesis experiments. Because laboratory measures of fitness effects have
limited sensitivities and relative frequencies of different mutations in mutagenesis studies may not match those in
nature, we here revisit this issue using comparative genomics. We extend the standard codon model of sequence
evolution by adding the parameter g that quantifies the ratio of the fixation probability of transitional nonsynonymous
mutations to that of transversional nonsynonymous mutations. We then estimate g from the concatenated alignment of
all protein-coding DNA sequences of two closely related genomes. Surprisingly, g ranges from 0.13 to 2.0 across 90 species
pairs sampled from the tree of life, with 51 incidences of g< 1 and 30 incidences of g>1 that are statistically significant.
Hence, whether nonsynonymous transversions are overall more deleterious than nonsynonymous transitions is species-
dependent. Because the corresponding groups of amino acid replacements differ between nonsynonymous transitions
and transversions, g is influenced by the relative exchangeabilities of amino acid pairs. Indeed, an extensive search reveals
that the large variation in g is primarily explainable by the recently reported among-species disparity in amino acid
exchangeabilities. These findings demonstrate that genome-wide nucleotide substitution patterns in coding sequences
have species-specific features and are more variable among evolutionary lineages than are currently thought.

Key words: amino acid exchangeability, codon substitution model, natural selection, sequence evolution, transition
bias, transition/transversion ratio.

Introduction
Nucleotide changes between the two purines (A and G) and
those between the two pyrimidines (C and T) are known as
transitions, whereas changes between a purine and a pyrim-
idine are known as transversions. Because there are four types
of transitions but eight types of transversions, the expected
number of transitions relative to that of transversions (Ts/Tv)
is 0.5 in DNA sequence evolution if all types of nucleotide
changes have equal rates. In reality, however, Ts/Tv often
exceeds 0.5 or even 1 (Nei and Kumar 2000; Yang 2006).
This phenomenon, referred to as the transition bias, is well
recognized and is commonly considered in nucleotide or co-
don substitution models of DNA sequence evolution that are
used for estimating nucleotide substitution rates, inferring
molecular phylogenies, and testing natural selection
(Kimura 1980; Hasegawa et al. 1985; Li et al. 1985; Tamura
and Nei 1993; Goldman and Yang 1994; Yang et al. 1998;
Zhang et al. 1998).

The transition bias observed in the evolution of protein-
coding DNA sequences has two sources of origin. First, the

transition bias exists at the mutational level. Transitions re-
quire a much smaller distortion of the DNA double-helix
structure than transversions so tend to occur more frequently
in DNA replication. In addition, deamination, a common
chemical change of nucleotides, leads to transitions.
Genome-wide evidence for transition bias at the mutational
level typically comes from mutation accumulation (MA)
experiments, in which mutations are accumulated over
many generations in organisms kept in extremely small pop-
ulations to minimize the effect of selection. For instance,
spontaneous mutations observed in MA experiments of
Saccharomyces cerevisiae (Lynch et al. 2008; Zhu et al. 2014;
Liu and Zhang 2019), Drosophila melanogaster (Haag-Liautard
et al. 2008; Schrider et al. 2013), and Arabidopsis thaliana
(Ossowski et al. 2010) show transition bias. Similar biases
were found among single nucleotide polymorphisms of nat-
ural populations at noncoding or synonymous sites, which
are presumably under little or no natural selection
(Freudenberg-Hua et al. 2003; Rosenberg et al. 2003; Cutter
2006; Jiang and Zhao 2006; Hershberg and Petrov 2010).
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Notably, however, the transition bias at the mutational level
was reported to be absent in the nematode Caenorhabditis
elegans (Denver et al. 2009).

Second, the transition bias also results from natural selec-
tion. For example, Zhu et al. (2014) observed Ts/Tv ¼ 0.95
from 867 spontaneous mutations in Saccharomyces cerevisiae
MA lines, but Ts/Tv ¼ 2.96 when the MA ancestral line is
compared with the yeast reference genome. A similar infla-
tion of Ts/Tv among natural polymorphisms relative to
mutations is also observed in Caenorhabditis elegans
(Denver et al. 2009). These results suggest that transitions
are less deleterious and less likely to be purged by natural
selection than transversions. The difference in purifying selec-
tion intensity on transitions and transversions has two po-
tential causes in coding sequences. First, due to the structure
of the genetic code, transitions are more likely than trans-
versions to be synonymous, rendering transitions less often
selected against than transversions and an inflated Ts/Tv. This
mechanism is theoretically sound and empirically supported
(Zhang 2000; Freudenberg-Hua et al. 2003; Schrider et al.
2013). Second, it has been suggested that, compared with
nonsynonymous transversions, nonsynonymous transitions
are less deleterious because they tend not to cause radical
changes in amino acid physicochemical properties such as the
charge, polarity, and size (Zhang 2000). For instance, Zhang
(2000) grouped the 20 amino acids into different physico-
chemical bins and reported that nonsynonymous transitions
are less likely than nonsynonymous transversions to cause
amino acid changes from one bin to another. Furthermore,
he reported a lower substitution rate for nonsynonymous
transversion than nonsynonymous transition in mammalian
gene evolution (Zhang 2000). Freudenberg-Hua et al. (2003)
classified amino acid changes as radical or conservative
according to the Grantham physicochemical distance
(Grantham 1974) and showed a similar trend among human
nonsynonymous polymorphisms. Although these studies
support the existence of a selection strength difference be-
tween nonsynonymous transitions and transversions,
Stoltzfus and Norris (2016) disagreed with this view. Based
on eight mutagenesis studies that measured the fitness effects
of 1,239 nonsynonymous mutations in six viruses and the
beta-lactamase TEM-1 gene in Escherichia coli, the authors
found no significant difference in fitness effect between non-
synonymous transitions and transversions. By contrast, Lyons
and Lauring analyzed 11,282 nonsynonymous mutations
from deep mutational scans in the influenza virus and human
immunodeficiency virus and reported that nonsynonymous
transversions are significantly more deleterious than nonsy-
nonymous transitions (Lyons and Lauring 2017). Thus,
whether nonsynonymous transversions are generally more
deleterious than nonsynonymous transitions remains
controversial.

We note that, although mutagenesis studies are powerful
in its ability to test the fitness impact of any mutation of
interest, it has a limited sensitivity. For instance, fitness differ-
ence smaller than 0.02% per generation is virtually undetect-
able in the lab (Gallet et al. 2012), whereas natural selection
can detect a fitness difference that is larger than the inverse of

the effective population size. In addition, we note that both
nonsynonymous transitions and nonsynonymous transver-
sions comprise a mixture of many types of amino acid
changes whose relative frequencies depend on a number of
factors such as codon frequencies, which vary among species.
Hence, the relative frequencies of various amino acid changes
in mutagenesis studies may not represent those in nature for
the same species and genes, let alone other species and genes.
Consequently, to answer whether nonsynonymous transi-
tions are on average less deleterious than nonsynonymous
transversions, we need to analyze evolutionary data. In this
study, we built a codon substitution model that includes the
parameter g that measures the fixation probability of non-
synonymous transitions relative to that of nonsynonymous
transversions. Estimating g from each of 90 pairs of genomes
across the tree of life, we find that g varies from significantly
below 1 to significantly above 1. We show that this unex-
pected result is most likely due to the variation of amino acid
exchangeabilities across evolutionary lineages.

Results

A Likelihood Estimator of g, the Fixation Probability of
Nonsynonymous Transitions Relative to That of
Nonsynonymous Transversions
Let g be the fixation probability or acceptability of nonsynon-
ymous transitions relative to that of nonsynonymous trans-
versions. To estimate g, we extended the Markov codon
substitution model of Goldman and Yang (1994) such that
the rate of substitution from codon u to codon v is given by

quv ¼

0; if u and v differ at more than one position

pv; if u and v differ by a synonymous transversion

jpv; if u and v differ by a synonymous transition

xpv; if u and v differ by a nonsynonymous transversion

gxjpv; if u and v differ by a nonsynonymous transition

;

8>>>>>>>><
>>>>>>>>:

(1)

where pv is the equilibrium frequency of codon v, j is the
transition bias at the mutational level, and x is the accept-
ability of nonsynonymous transversions relative to that of
synonymous transversions. When g¼ 1, nonsynonymous
transitions and transversions have overall the same accept-
ability. When g > 1, nonsynonymous transitions are overall
more acceptable (i.e., less deleterious) than nonsynonymous
transversions. By contrast, when g< 1, nonsynonymous tran-
sitions are overall less acceptable (i.e., more deleterious) than
nonsynonymous transversions. By this definition of quv, the
model is time-reversible (Yang 2006). As in the standard co-
don model, synonymous mutations are assumed to be neu-
tral here; we discuss consequences of any violation of this
assumption later (see the last section under Results). We
implemented the above model in the program codemlz
(see Materials and Methods) by modifying the program
codeml in PAML (Yang 2007) that implemented the original
codon model. Using codemlz allows a maximum likelihood
estimation of g from an alignment of coding sequences from
any number of taxa.
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We performed computer simulations to verify the reliabil-
ity of the above-described estimator of g. Specifically, we
simulated coding sequence evolution under the model de-
scribed above to produce a pair of homologous sequences of
500,000 codons. This long alignment was used because our
purpose was to validate the maximum likelihood implemen-
tation of the model and to evaluate the potential bias in g
estimation rather than the sampling error and because this
length is close to the median alignment length (486,750
codons) of real sequences analyzed in this study. A series of
g values ranging from 0.1 to 2 were used in the simulation.
We also varied the genetic distance d, which is defined by the
number of nucleotide substitutions per codon between the
two sequences, j, and x to examine if g estimation is reliable
under a variety of parameter combinations. We found that
the estimated g is unbiased (fig. 1). For example, when the
true g is 1.2, the estimated g values under six different d
values each with N¼ 10 replicates have a mean of 1.204
and a standard deviation of 0.027 (fig. 1a). Considering all g
estimates in figure 1a together, we found that the deviation of
the estimated g from the true value was not significantly
different from 0 (P¼ 0.14, one-sample t-test). Furthermore,
no correlation was observed between the deviation of the g
estimate from its true value and the true d in figure 1a
(Spearman’s q ¼ �0.015, P¼ 0.76). Similarly, there is no sig-
nificant correlation between the deviation of the g estimate
from its true value and the true j (fig. 1b) or x (fig. 1c).

Substantial Variation of g across the Tree of Life
After verifying the reliability of the g estimator, we applied the
estimator to 90 clades across the tree of life (supplementary
table S1, Supplementary Material online), including 15 eu-
karyotic, 6 archaeal, and 69 bacterial clades. The eukaryotic
clades comprise six vertebrate, two insect, two fungal, three
plant, and two protozoan clades. Each of the 90 clades
includes a pair of relatively closely related species or strains
with available genome sequences. With the genome-wide
concatenated coding sequence alignment available for each
clade (see Materials and Methods), we estimated g for each
clade using codemlz.

The results are surprising (fig. 2 and supplementary table
S1, Supplementary Material online). Within both eukaryotes
and prokaryotes, some clades show g> 1, whereas other
clades exhibit g< 1. In total, 34 clades have g> 1, with the
largest being 2.0; whereas 56 clades have g< 1, with the
smallest being 0.13. For example, for the clade containing
two malaria pathogens Plasmodium vivax and P. knowlesi,
the inferred g is 2.0, indicating that nonsynonymous transi-
tions are twice as likely to be fixed as nonsynonymous trans-
versions. By contrast, g is estimated to be 0.54 for the clade
consisting of the ant species Atta cephalotes and Solenopsis

(a)

(b)

(c)

FIG. 1. Simulations according to equation (1) show that the inferred
g’s are unbiased when compared with the true values and are uncor-
related with (a) the genetic distance (d) between the two species in
the clade, (b) transition bias at the mutational level (j), and (c) the
fixation probability of nonsynonymous transversions relative to that
of synonymous transversions (x). In each panel, only the parameter
shown on the x-axis varied. Each dot is one g estimate plotted against
the true value of another parameter used in the simulation. The true
value of an g estimate is indicated by its color, and the dotted lines
correspond to the true g values for easy comparison. Genetic distance

Fig. 1. Continued
is defined by the number of nucleotide substitutions per codon be-
tween the two sequences. In each plot, except for the parameter
varied, the other parameters used in the simulation are d¼ 1 substi-
tution per codon, j ¼ 2, and x ¼ 0.06.
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invicta, meaning that the acceptability of nonsynonymous
transitions is close to one half that of nonsynonymous trans-
versions. Among the 90 clades, 81 have an g that deviates
significantly from 1 (P< 0.05, likelihood ratio test followed by
Bonferroni correction for multiple testing), including 30 cases
of g> 1 and 51 cases of g < 1.

To examine the potential variation of g within a genome,
we randomly split the coding sequence alignment of a clade
into two halves and estimated g from each half. The 90 esti-
mated g’s from the first halves have a strong correlation
(Spearman’s q ¼ 1.0, P< 1E-89) with those from the second
halves. This is true in all five replicate analyses of random
genome split, indicating that the phenomenon of g hetero-
geneity among clades is not observed among large segments
within a genome. Additionally, we ranked all genes in each
clade by their x values (see Materials and Methods) and
grouped the 50% top-ranked genes into one bin and the
remaining genes into the second bin. We found that g esti-
mated from the concatenated sequences of the high-x bin
and the corresponding g from the low-x bin are highly cor-
related across the 90 clades (q¼ 0.82, P¼ 1.2E-22). This result
suggests that g is a clade-specific feature that is shared by
both high- and low-x genes.

Causes of the Among-Clade Variation in g
Why does g vary among different clades, reaching values of
both higher than 1 and lower than 1? Because the overall
acceptability of nonsynonymous transitions relative to that of
nonsynonymous transversions depends on the acceptability
of individual nonsynonymous mutations, a mechanistic un-
derstanding requires considering the underlying relative
exchangeabilities among amino acids (Zou and Zhang
2019). Here, the relative exchangeability between amino acids
i and j, or REij, is the fixation probability of mutations con-
verting between i and j, relative to the overall fixation prob-
ability of all nonsynonymous mutations. To study how amino

acid exchangeabilities influence g, we simulated sequence
evolution using the general codon model proposed in Yang
et al. (1998), with slight modifications. Specifically, the rate of
substitution from codon u to codon v equals

quv ¼

0; if u and v differ at more than one position

pv; if u and v differ by a synonymous transversion

jpv; if u and v differ by a synonymous transition

xijpv; if u and v differ by a nonsynonymous transversion

xijjpv; if u and v differ by a nonsynonymous transition

:

8>>>>>>>><
>>>>>>>>:

(2)

Here, xij is the fixation probability of mutations converting
codon u to v, where u and v respectively code for amino acid i
and j 6¼ i, relative to the fixation probability of synonymous
mutations. Each xij is the product of the corresponding REij

and x0, which is the overall fixation probability of nonsynon-
ymous mutations relative to that of synonymous mutations.
All other notations in equation (2) are the same as in equa-
tion (1). Note that REij¼ REji, so xij ¼ xji. The set of REij used
are derived from the aforementioned Grantham physico-
chemical distances between amino acids (see Materials and
Methods). To probe factors potentially explaining the
among-clade variation in g, we varied parameters or combi-
nations of parameters in the simulation according to their
observed values in the 90 clades. If any specific parameter in
this model is responsible for the observed g heterogeneity, we
should be able to replicate the observed g heterogeneity by
varying that parameter across its range observed in the actual
data.

First, we simulated sequence evolution with a series of j
values while keeping all other parameters constant, and then
used codemlz to estimate g from the simulated sequences.
We observed a significant, negative correlation between j
and the estimated g (Spearman’s q ¼ �0.93, P¼ 4.7E-69;
fig. 3a), suggesting that increasing the transition bias at the

FIG. 2. The estimated g varies among 90 clades sampled across the tree of life. Each clade is represented by an alignment of genome-wide
orthologous coding sequences of two closely related species/strains. Statistical significance of g’s deviation from 1 is determined by an adjusted P
value of <0.05 (likelihood ratio test followed by Bonferroni correction for multiple testing). Clade indices on the x-axis refer to those in supple-
mentary table S1, Supplementary Material online.
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mutational level decreases g (under the other parameters
used). This correlation is consistent with the observation in
the real data (supplementary fig. S1a, Supplementary Material
online). Nevertheless, with j changing from 0.5 to 20 in the
simulation, the estimated g varies only in the narrow range of
0.78–0.92 (fig. 3a). By contrast, among the 90 clades in the real
data examined, 88 clades have inferred j within the same
range [0.5, 20], whereas the corresponding g estimates vary in
the much wider range of 0.12–2.0 (fig. 2). Hence, the among-
clade variation in j alone cannot explain the observed large
variation of g.

Second, we simulated sequence evolution under a
series of x0 values between 0.02 and 0.50 while main-
taining all other parameters unchanged (fig. 3b). Despite
a significant positive correlation between x0 and the
estimated g (q ¼ 0.97, P¼ 1.0E-108), the estimated g
ranges merely from 0.81 to 1.0. Furthermore, the real
data do not exhibit a positive correlation between the
estimated x and g (supplementary fig. S1b,
Supplementary Material online). Thus, variation in x0

cannot explain the observed large variation in g among
different evolutionary lineages.

Third, we simulated 90 pairs of sequences using the same
parameters except for the codon frequencies p, for which we
respectively used the observed codon frequencies from the 90
clades. The estimated g of the 90 pairs of simulated sequences
ranges from 0.74 to 1.07 (fig. 3c), which is still much narrower
than the range observed from the 90 actual clades (fig. 2).
Furthermore, no positive correlation was detected between
the g values estimated from the simulated sequences and
those estimated from the actual sequences (q ¼ �0.04,
P¼ 0.72; fig. 3c inset). These results indicate that the different
codon frequencies of different clades are insufficient to ex-
plain the observed g heterogeneity.

Fourth, we also tested the effect of the genetic distance (d)
between two species in a clade on the estimated g value.
Sequence evolution under a series of d values between 0.05
and 5.5 was simulated, whereas all other parameters were
unchanged. Although there is a positive correlation between
the estimated g and d, g varies only within the range of 0.8–
1.07 (fig. 3d), and no positive correlation exists between g and
d in the real data (supplementary fig. S1c, Supplementary
Material online). Hence, d cannot be a major factor driving
the observed among-clade g variation in real data.

(a) (b) (d)

(c) (e)

FIG. 3. Variations in j, x0, p, d, or their combination are insufficient to explain the large among-clade variation in the estimated g. Here, g’s
estimated from sequence alignments simulated under equation (2) are plotted against the true values of (a) j, (b) x0, (c) p, (d) d, or (e)
combination of j, x0, p, and d used in the simulations. In (a), (b), and (d), only the parameter on the x-axis varied in the simulations. In (c)
and (e), the observed codon frequencies and combination of j, x0, p, and d of the 90 clades are respectively used in the simulations, and the insets
plot the g estimated from the real sequence alignment of each clade against that estimated from the alignment simulated. For each parameter
value, the g estimates from ten replicate simulations are shown as dots (in panels a, b, and d) or boxplots (in panels c and e). In each boxplot, the
lower and upper edges of a box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line inside the box indicates the
median (md), and the whiskers extend to the most extreme values inside inner fences, md 6 1.5(qu3� qu1). In the insets of panels (c) and (e), the
mean estimate from the ten replicate simulations is shown on the y-axis. In each plot, except for the parameter varied, the other parameters used in
the simulation are d¼ 1 substitution per codon, j ¼ 2, and x ¼ 0.06.
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Although individual variations of the above parameters
cannot explain the observed g variation, it remains possible
that clade-specific combination of j, x0, p, and d can pro-
duce the observed heterogeneity of g. To examine this pos-
sibility, we simulated 90 pairs of sequences using the
corresponding j, x0, p, and d estimated from each of the
90 real clades, but with the single set of Grantham-matrix-
derived relative amino acid exchangeabilities (REs). Although
some estimated g values from these 90 simulated sequence
alignments deviate substantially from 1, most are still con-
centrated within a small range from 0.7 to 1.0, with only two
clades showing g> 1 (fig. 3e). Furthermore, the correlation
between these g estimates and those from the real data is
moderate (q ¼ 0.25, P¼ 0.016; fig. 3e inset). Thus, the com-
bined variation of these parameters cannot explain most of
the observed variation of g among the 90 clades.

Given the above set of largely negative findings, we used
simulations to investigate the impact of the last component,
REs, on g. Starting from the REs used above, we created a
series of modified REs by randomly increasing or decreasing
each original RE by a certain percentage, or by shuffling REs
between different amino acid pairs (see Materials and
Methods). Under constant j, x0, p; and d, we conducted
simulations with these different REs and found a large varia-
tion in the estimated g among the simulated clades. For ex-
ample, the estimated g ranges from 0.37 to 1.52 when a series
of REs that are 90% different from the original REs are used
(fig. 4a). This level of variation largely matches that observed
from the real data; importantly, the estimated g varies from
below 1 to well above 1. Thus, variation in REs could in prin-
ciple explain the observed heterogeneity in g:

We recently used the codeml program in PAML to esti-
mate x0 and REs from each of the 90 clades examined here
(Zou and Zhang 2019) (see Materials and Methods). To fur-
ther verify that the RE variation explains the g variation, we

simulated the 90 pairs of sequences using the respectively
estimated REs, keeping j, x0, p, and d constant.
Interestingly, the g’s estimated from the simulated sequences
closely match those estimated from the real sequences
(r¼ 0.98, P¼ 8E-62; fig. 4b), and this is true to each of the
three domains of life (r> 0.97, P< 1E-4 for each domain).
This finding strongly suggests that the among-clade variation
in REs is the primary cause for the observed g variation
among evolutionary lineages. We note that the g’s estimated
from the simulated sequences are slightly inflated when com-
pared with those estimated from the real sequences (fig. 4b),
likely because all simulated sequences were generated under
the same set of j, x0, p, and d instead of each clade’s specific
values.

In theory, g is the mean RE for amino acid changes caused
by nonsynonymous transitions, weighted by the correspond-
ing frequencies of codon pairs, divided by its counterpart for
nonsynonymous transversions (see Materials and Methods).
To validate this relationship, we calculated g for each of the
90 clades from the estimated REs and codon frequencies of
each clade. These calculated g values are very strongly corre-
lated with the likelihood estimates of g from the real data
(r¼ 0.97, P¼ 9E-54; fig. 4c), supporting the proposed math-
ematical relationship between g and REs.

Robustness of the above Finding to Potential Model
Misspecification in g Estimation
Model-based analysis could yield misleading results if the as-
sumed model differs from the reality and the analysis is sen-
sitive to model misspecification (Zhang 1999). In our g
estimator, x is assumed constant across codons along a se-
quence despite the commonality of substitution rate hetero-
geneity (Zhang and Gu 1998; Yang 2006) and hence x
heterogeneity. To investigate whether this model simplifica-
tion had affected our conclusion, we simulated sequence

(a) (b) (c)

FIG. 4. Variation of REs among clades can explain g variation. (a) Simulations with RE values based on the Grantham matrix (see Materials and
Methods). For each of the ten new RE sets at a given level of deviation from or shuffled from the original values, five replicate sequence evolution
simulations are conducted and the corresponding g estimates are plotted. Different RE sets at each deviation level and from each independent
shuffle are distinguished by different (randomly assigned) colors. (b) The g’s estimated from the 90 clades simulated using the corresponding RE
values of the real clades are plotted against the g’s estimated from the real clades. Dots are colored by the corresponding taxonomic group of the
clades, as shown in the legend. The dashed red line indicates y¼ x. The y-axis value of each dot is the mean estimate from ten replicate simulations.
(c) The expected g computed from the estimated REs and codon frequencies of each clade is plotted against the g estimated by the likelihood
method from the alignment of the clade. The dashed red line indicates y¼ x. The y-axis value of each dot is the mean estimate from ten replicate
simulations.
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evolution under equation (1) with x varying among codons
following a gamma distribution, where the shape parameter a
measures the extent of this variation. We found that, under a
diverse set of parameters of a, d, j, and mean x, the g
estimates from the simulated sequences are largely accurate
(supplementary fig. S2a–c, Supplementary Material online).
Although biased estimation of g does exist under extreme
parameter settings such as d¼ 5, j ¼ 20, and a ¼ 0.2 (last
plots in supplementary fig. S2a and b, Supplementary
Material online), the bias tends to underestimate the devia-
tion of g from 1, potentially masking the among-clade het-
erogeneity in g.

Additionally, in the presence of among-codon x variation,
we simulated a set of sequence alignments in which each
codon along a sequence follows one of ten different codon
equilibrium frequencies created by shuffling the 61 numbers
in the original p. Even with such an extensive and radical
codon compositional heterogeneity, deviation of estimated
g from the true value is <10% (supplementary fig. S2d,
Supplementary Material online).

We also simulated sequence evolution under equation (2)
with among-codon variation of x0 following a gamma distri-
bution with a¼ 1 and confirmed that none of the variations
of j (supplementary fig. S3a, Supplementary Material online),
mean x0 (supplementary fig. S3b, Supplementary Material
online), p (supplementary fig. S3c, Supplementary Material
online), d (supplementary fig. S3d, Supplementary Material
online), or their combination (supplementary fig. S3e,
Supplementary Material online) can explain the large hetero-
geneity in g observed from the real data. By contrast, in the
presence of among-codon variation of x0, varying amino acid
exchangeabilities produces g’s ranging from 0.55 to 1.35 (sup-
plementary fig. S4a, Supplementary Material online).
Furthermore, when sequences are simulated with REs inferred
from the real data and with among-site x0 variation, the g’s
estimated from the simulated sequences correlate strongly
with those estimated from the real data (r¼ 0.98, P¼ 4.5E-62;
supplementary fig. S4b, Supplementary Material online).
Thus, our conclusion that the large among-clade variation
in g is caused primarily by the variation in REs is robust to
model simplification about among-codon variation in selec-
tion intensity.

Another major model simplification in our inference of g is
that we considered only one aspect of mutational bias, tran-
sition bias. To confirm that this model simplification had not
affected our conclusion, we simulated sequence evolution
under equation (3) as follows:

quv ¼

0; if u and v differ at more than one position

jmnpv; if u and v differ by a synonymous change

jmnxijpv; if u and v differ by a nonsynonymous change

:

8>><
>>:

(3)

Equation (3) is a more general version of equation (2) that
allows a more complex mutational scheme. Here, mutations
follow a General Time-Reversible (GTR) model, with

mutability jmn between nucleotides m and n. We estimated
the six jmn parameters from 4-fold degenerate sites of each of
the 90 clades and used these values to simulate sequence
evolution, while keeping other parameters constant across
clades. Although there is a positive correlation between g’s
estimated from the simulated sequences and those estimated
from the real data (r¼ 0.46, P¼ 5.8E-6; supplementary fig.
S5a, Supplementary Material online), the correlation is
much weaker than that when REs estimated from the actual
data were used in the simulation (fig. 4b and supplementary
fig. S4b, Supplementary Material online). A similar result was
obtained when the among-codon x variation was also in-
cluded in the simulation (supplementary fig. S5b,
Supplementary Material online). Hence, the observed
among-clade g variation cannot be caused primarily by the
mutational biases that are ignored in g inference.

The third major model simplification in our analyses is
the negligence of potential natural selection on synony-
mous mutations. One can see from equation (1) that g is
the transition bias of nonsynonymous substitutions (jg)
relative to that of synonymous substitutions (j). The
among-clade variation of j exceeds that of jg (blue
dots in supplementary fig. S6, Supplementary Material on-
line). Under the assumption that synonymous transition
bias equals mutational transition bias, we have interpreted
g as the fixation probability of nonsynonymous transitions
relative to that of nonsynonymous transversions. In reality,
however, synonymous mutations may not be completely
neutral. Hence, it is possible that synonymous transition
bias differs from mutational transition bias, due to selec-
tions related to nucleotide composition (Long et al. 2018),
mRNA folding (Bartoszewski et al. 2010; Park et al. 2013;
Yang et al. 2014; Presnyak et al. 2015), translation effi-
ciency (Ikemura 1981; Kanaya et al. 1999; Akashi 2003;
Rocha 2004; Qian et al. 2012; Spencer and Barral 2012),
translation accuracy (Drummond and Wilke 2008), protein
structure and amino acid usage (Oresic and Shalloway
1998; Morton 2001; Pechmann and Frydman 2013;
Bła_zej et al. 2017), or mutational cost (Bła_zej et al.
2017). Most of these factors introduce synonymous codon
usage biases (Hershberg and Petrov 2008). Some of them
(e.g., selection on nucleotide composition) should act sim-
ilarly on synonymous and nonsynonymous mutations,
whereas others may not. Hence, strictly speaking, g esti-
mated by equation (1) should be interpreted as nonsy-
nonymous transition bias relative to synonymous
transition bias. Therefore, the among-clade variation of g
is caused by among-clade variations in factors differentially
influencing synonymous and nonsynonymous transition
biases.

To investigate the extent to which selection on synony-
mous mutations impacts our results, we modified and imple-
mented in codemlz the FMutSel model (Yang and Nielsen
2008) that explicitly includes selection on synonymous muta-
tions, as described by equation (4):

Nonsynonymous Transitions and Transversions . doi:10.1093/molbev/msaa200 MBE

187

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/38/1/181/5893485 by Institute of Zoology, C
AS user on 13 January 2025



quv ¼

0; if u and v differ at more than one position

p�vk

Fv � Fu

1� expðFu � FvÞ
; if u and v differ by a synonymous transversion

jp�vk

Fv � Fu

1� expðFu � FvÞ
; if u and v differ by a synonymous transition

xp�vk

Fv � Fu

1� expðFu � FvÞ
; if u and v differ by a nonsynonymous transversion

xgjp�vk

Fv � Fu

1� expðFu � FvÞ
; if u and v differ by a nonsynonymous transition

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(4)

Here, Fv is twice the effective population size multiplied by
the fitness of the genotype with codon v, k (¼1, 2, or 3) is the
position at which u and v differ, and p�vk is the equilibrium
frequency of the nucleotide at position k of codon v, and all
other symbols have the same meanings as defined earlier.
Because natural selection on synonymous mutations is ex-
plicitly considered here, the g estimated under this model
should truly reflect the fixation probability of nonsynony-
mous transitions relative to that of nonsynonymous trans-
versions. The inferences under equation (4) reveal a drastically
reduced among-clade variation in synonymous transition bias
(j) (orange dots in supplementary fig. S6, Supplementary
Material online) compared with that under equation (1)
(blue dots in supplementary fig. S6, Supplementary Material
online), confirming that part of the previously observed var-
iation in j (blue dots in supplementary fig. S6, Supplementary
Material online) arose from a variation in selection on syn-
onymous mutations. Additionally, the among-clade variation
in nonsynonymous transition bias (jg) now exceeds that in
synonymous transition bias (j) (orange dots in supplemen-
tary fig. S6, Supplementary Material online). Most impor-
tantly, the g estimates still vary substantially among the 90
clades, ranging from 0.39 to 1.72 (supplementary fig. S7,
Supplementary Material online). Furthermore, these g esti-
mates correlate strongly with those estimated under equation
(1) (r¼ 0.73, P¼ 6.2E-16; supplementary fig. S7,
Supplementary Material online). Thus, most of the observed
among-clade variation in g (fig. 2) is not caused by ignoring
natural selection on synonymous mutations in g estimation.
We believe that the new g estimates are more reliable meas-
ures of the ratio of the fixation probability of transitional
nonsynonymous mutations to that of transversional nonsy-
nonymous mutations when compared with the estimates
under equation (1) that ranged from 0.13 to 2.0 across the
90 clades (fig. 2), because the potential influence of selection
on synonymous mutations has now been excluded. Because
the RE values of the 90 clades used in the present study were
previously estimated under a model with no selection on
synonymous mutations (Zou and Zhang 2019), one wonders
whether the RE estimator is robust to the violation of the
assumption of no selection on synonymous mutations. Our
computer simulation verified that it is largely robust (supple-
mentary fig. S8, Supplementary Material online).

Discussion
In this work, we studied a potential cause of the widespread
phenomenon of transition bias in coding sequence evolution
and tackled the controversy of whether nonsynonymous

transversions are more deleterious than nonsynonymous
transitions. We developed a likelihood estimator of g, the
fixation probability of nonsynonymous transitions, relative
to that of nonsynonymous transversions, and showed that
this estimator is reliable. Surprisingly, however, applying this
estimator to 90 two-species clades across the tree of life
revealed a large variation of g from significantly above 1 to
significantly below 1, whereas the difference between two
random halves (or two halves with contrasting x) of a ge-
nome is minimal. An extensive search showed that this
among-clade heterogeneity in g is largely attributable to
the recently discovered variation in amino acid exchangeabil-
ities among evolutionary lineages (Zou and Zhang 2019). We
further demonstrated that the above conclusion is robust to
the negligence in g estimation of potential among-codon x
variation, various mutational biases, and selection on synon-
ymous mutations.

As mentioned in Introduction, an intraspecific study in
humans (Freudenberg-Hua et al. 2003) and an interspecific
study in mammals (Zhang 2000) both concluded that non-
synonymous transversions are more deleterious than non-
synonymous transitions. Indeed, we observed g> 1 in three
of the four mammalian clades surveyed here (the second to
fourth clade in fig. 2). Nevertheless, our broader phylogenetic
survey also found g< 1 in many other clades, including the
clade of human and rhesus macaque (g¼ 0.92) (fig. 2). Thus,
although these previous findings might not be wrong, they
provided an incomplete picture.

In summary, our study showed that whether nonsynon-
ymous transversions are overall more deleterious than non-
synonymous transitions varies with species. Of all possible
factors we have investigated, the among-species variation in
amino acid exchangeabilities is the primary cause of the
among-species variation in g. The among-species variation
in amino acid exchangeabilities is probably a result of
proteome-wide changes in the physicochemical environ-
ments of amino acid residues during evolution (Zou and
Zhang 2019), but more studies are required to gain a better
understanding of its exact origin. Regardless, multiple recent
studies have investigated amino acid exchangeabilities (or
related relative substitution rates) and reported cases of
species-specificity (Dang et al. 2010; Chen et al. 2019;
Weber and Whelan 2019). The variations of amino acid
exchangeabilities and g among species demonstrate that
even some of the most fundamental parameters of protein
and DNA sequence evolution vary among evolutionary line-
ages, which cautions against assuming a constant molecular
evolutionary model across all life forms.

Materials and Methods

Sequence Data
The sequence alignments used in this study were from Zou
and Zhang (2019) and the full list of the 90 clades surveyed is
in supplementary table S1, Supplementary Material online.
Sequence data used were retrieved from various sources listed
in supplementary table S1, Supplementary Material online.
Specifically, coding sequence alignments of four mammalian
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clades, fruitflies, and yeasts were directly retrieved from re-
spective databases. For each of the other eukaryotic clades, we
queried in Ensembl (https://useast.ensembl.org/index.html;
last accessed August 17, 2020) a list of all one-to-one orthol-
ogous genes for the pair of species and downloaded their
coding sequences. The coding sequences were translated
into protein sequences using MACSE v1.02 (Ranwez et al.
2011). Local pairwise protein sequence alignment was per-
formed for each pair of orthologs by MAFFT v7.294b (Katoh
and Standley 2013) using the L-INS-i algorithm. The corre-
sponding coding sequence alignment was then derived using
a custom Python script. All prokaryotic clades were sampled
from strains available in the ATGC database (Kristensen et al.
2017). All alignments were filtered so that no gaps, missing
data, or ambiguous codons exist. The alignments have been
deposited to GitHub (https://github.com/ztzou/REvariation;
last accessed August 17, 2020).

Modification of the Codeml Program
We modified the codeml program in PAML 4.8 (Yang 2007)
and named the modified program “codemlz.” To use
codemlz, one should use the following model setting (follow-
ing the original codeml control file): seqtype¼ 1, CodonFreq
¼ 3, clock¼ 0, model¼ 0, NSsites¼ 0, Mgene¼ 0, fix_alpha
¼ 1, and alpha¼ 0. To conduct inferences under the FMutSel
model, one should use: seqtype¼ 1, CodonFreq¼ 7, estFreq
¼ 1, clock¼ 0, model¼ 0, NSsites¼ 0, Mgene¼ 0, fix_alpha
¼ 1, and alpha¼ 0. Two options are added to the control file
for g estimation: “fix_eta” and “eta.” Setting fix_eta¼ 0 allows
inferring g with the initial value specified by eta, whereas
setting fix_eta¼ 1 assumes a fixed g with the value specified
by eta. The inferred g value is output to the “mlc” file gener-
ated by the program. The codemlz program can be accessed
from GitHub (https://github.com/ztzou/codemlz; last
accessed August 17, 2020).

Inference of g
We used codemlz to estimate g. We ran codemlz on a given
sequence alignment 30 times, with three replicate runs of
each of ten different initial g values (from 0.1 to 50), to avoid
spurious results. The run yielding the highest likelihood pro-
vided the likelihood estimates of model parameters under the
alternative hypothesis (H1) in which g is unconstrained. We
further performed three replicate runs under the null hypoth-
esis (H0) in which g¼ 1.0. The run with the highest likelihood
offered the model parameters under H0. H1 and H0 were
compared via a likelihood ratio test with one degree of free-
dom. Parameters inferred under H1 (j, d, x, and g) were
used in all downstream analyses.

Inference of x
To estimate x for each gene in each clade, we used codeml in
PAML 4.9e. Filtered alignments of individual genes were used
as input. Codeml was called with the parameter setting of
seqtype¼ 1, CodonFreq¼ 3, clock¼ 0, model¼ 0, NSsites¼
0, Mgene ¼ 0, fix_kappa ¼ 0, kappa ¼ 2.0, fix_omega ¼ 0,
omega¼ 0.4, fix_alpha¼ 1, and alpha¼ 0. When conducting
inferences under the FMutSel model, we used seqtype ¼ 1,

CodonFreq¼ 7, estFreq¼ 1, clock¼ 0, model¼ 0, NSsites¼
0, Mgene ¼ 0, fix_kappa ¼ 0, kappa ¼ 2.0, fix_omega ¼ 0,
omega ¼ 0.4, fix_alpha ¼ 1, and alpha ¼ 0.

Inference of GTR Parameters
To estimate parameters of the GTR model in each clade, we
used the program baseml in PAML 4.9e. Four-fold degenerate
sites in the concatenated coding sequence of each clade were
used as input. Baseml was called with the parameter setting of
model¼ 7, Mgene¼ 0, clock¼ 0, fix_kappa¼ 0, kappa¼ 5,
fix_alpha ¼ 0, and alpha ¼ 0.5.

Simulating Coding Sequence Evolution
Simulations in figure 1 and supplementary figure S2,
Supplementary Material online, followed the codon substitu-
tion model specified by equation (1). Simulations in figures 3
and 4 and supplementary figures S3 and S4, Supplementary
Material online, followed the model specified by equation (2).
Simulations in supplementary figure S5, Supplementary
Material online, followed the model specified by equation
(3). To simulate a clade with a pair of sequences, a transition
matrix P of 61 codons� 61 codons was first derived. For each
codon pair, the instantaneous rate of substitution q was set as
in equation (1) or (2). The resultant rate matrix Q was nor-
malized to have a total rate of 1, and the transition matrix was
then given by P ¼ eQt (Yang 2006). At each position, the
codon in an ancestral species was randomly generated
according to the equilibrium codon frequencies. This codon
evolved under a Markov process, based on the genetic dis-
tance d and the matrix P, to arrive at the codon in species 1
and species 2, respectively, each with a genetic distance of d/2
from the ancestral species. Across the 90 clades, the median
estimates (with one significant digit retained) are d¼ 1 sub-
stitution per codon, j ¼ 2, x ¼ 0.06, and g¼ 0.9. In all
simulations, except for the factor that varied in the simula-
tion, parameters (e.g., d, j, x, and x0), if applicable, were set
to the above median values across all clades to ensure a re-
alistic scenario. As mentioned, we simulated coding sequen-
ces of 500,000 codons for each clade. The original RE values
associated with equation (2) were set to element-wise inverse
of the Grantham matrix (Grantham 1974) stored in the
PAML 4.9e package (Yang 2007). Note that there are 75 RE
values, each for one pair of amino acids that can be converted
from each other by a single nucleotide change. In figure 4a
and supplementary figure S4a, Supplementary Material on-
line, to obtain each set of 75 new RE values, we sampled 75 x
values from a beta distribution with parameter a¼ 2 and
mean equal to the desired level of RE difference. Each of
the 75 new REs equaled the original value plus Ix, where I is
a random variable with a 50% probability of being 1 and a 50%
probability of being �1. New REs leading to the last column
(“shuffle”) were derived from matrices generated by shuffling
the elements in the above-mentioned element-wise inverse of
the Grantham matrix. The simulation in figure 4b and sup-
plementary figure S4b, Supplementary Material online, fol-
lowed equation (2), where RE values were obtained from
Zou and Zhang (2019). These values were estimated from
the respective alignments of real sequences using codeml
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with the following setting: count codon frequencies for each
individual codon; no clock; model 0 for coding sequence (one
x); NSsites ¼ 0; fixed alpha ¼ 0; omega and kappa are not
fixed; control parameter aaDist¼ 7. In simulations of supple-
mentary figures S2–S4, Supplementary Material online, vari-
ation of x or x0 among sites was modeled by a discrete
gamma distribution of 100 categories, with its mean equal
to the specified x value for the whole sequence.

Expected g from RE Values and Codon Frequencies
The calculation of expected g follows the following:

g ¼
P

u;v2NIpuREijpv=nNIP
u;v2NVpuREijpv=nNV

: (5)

Here, u and v are the codons before and after a single
nucleotide substitution, respectively; i and j 6¼ i are the amino
acids encoded by u and v, respectively; NI and NV are the sets
of nonsynonymous transitions and nonsynonymous trans-
versions, respectively; and n is the number of codon pairs
belonging to each set.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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