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Significance

 In biology, repeated emergence 
of the same functional trait in 
evolution is important as it 
provides opportunity to decode 
the relations between genome or 
protein sequences to specific 
functions. Such functional 
convergence has been largely 
linked to sequence convergence 
at the level of single sites, 
because conventional methods 
cannot measure similarity of 
high-order features of 
sequences. This study reveals 
that the recent protein language 
models can extract embeddings 
from protein sequences 
reflecting high-order features, 
and develops statistical tests to 
evaluate the adaptive 
convergence of such features. 
The findings emphasize an 
underrated sequence basis for 
functional trait convergence in 
evolution, provide corresponding 
detection framework, and 
demonstrate potential power of 
deep learning in investigating the 
complex sequence–function 
mapping in evolutionary biology.
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Convergent evolution, or convergence, refers to repeated, independent emergences of the 
same trait in two or more lineages of species during evolution, often indicating functional 
adaptation to specific environmental factors. Many computational methods have been 
proposed to investigate the genetic basis for organismal functional convergence, as an 
important way to decode the complex sequence–function map of proteins. These methods 
mostly focus on the convergence of amino acid states at the level of individual sites in 
functionally related proteins. However, even without site-level sequence similarity, protein 
function similarity may also stem from convergence of high-order protein features, which 
cannot be captured by the conventional methods. To fill this gap, we first derived numerical 
embeddings from protein sequences by pretrained protein language models (PLM). In 
four previously reported cases, we found that functionally convergent proteins have sim-
ilar embeddings despite no site-level convergence, indicating that PLM embeddings can 
reflect convergence of high-order protein features. We then designed a pipeline to detect 
Adaptive Convergence by Embedding of Protein (ACEP). ACEP tests were significant 
on known and additional candidate genes with putative adaptive convergence like echo-
location and crassulacean acid metabolism. Genome-wide application showed that the 
ACEP framework can effectively enrich such candidates. Relations between convergences 
of PLM embeddings and specific protein physicochemical features were further examined. 
In conclusion, PLM embeddings can indicate adaptive convergence of high-order protein 
features beyond site identities, demonstrating the power of deep learning tools for inves-
tigating the complex mapping between molecular sequences and functions.

convergent evolution | protein evolution | language model | adaptation | deep learning

 Convergent evolution, or convergence, refers to the biological phenomenon that the 
identical state of a trait emerges independently in two or more lineages of species during 
evolution. For example, some bat species and all toothed whales (TW) are capable of 
emitting and perceiving ultrasound ( 1 ), while this ability is absent in the common ancestors 
of these two evolutionarily distant lineages, rendering convergent emergence of echolo­
cation in both lineages a parsimonious explanation. Because the probability of coinciden­
tally arriving at the same state during evolution is low, convergence of organismal traits 
or biomolecule functions has been considered to be driven by adaptation to similar envi­
ronmental factors or lifestyles ( 2 ), thus becoming a topic of interest in evolutionary biology. 
In the echolocation case, the convergently evolved ability helps bats and TW to forage in 
dim-light environments ( 1 ).

 The genotype–phenotype mapping (GPM), or sequence–function mapping, is a central 
concept in biology for the understanding of how functions emerge and change by evolution 
( 3 ). Given a phenotype or function convergence, it is intriguing to investigate whether its 
genetic basis is also convergent evolution at the molecular sequence level ( 4                     – 15 ). For instance, 
Li et al found that phylogeny reconstruction based on the amino acid sequences of the 
Prestin protein unites echolocating bats (EB) and the bottlenose dolphin together, indicating 
high sequence similarity between the two lineages unexpected under the nonadaptive neutral 
evolution, thus suggesting adaptive sequence convergence as a basis for the functional con­
vergence of echolocation. Specifically, a convergent asparagine-to-threonine substitution at 
site 7 (N7T) of Prestin in both lineages was identified and later confirmed by experimental 
assay as functionally related to echolocation ( 9 ,  14 ). Many molecular evolution strategies 
have been developed to detect such site-level sequence convergence underlying functional 
convergence, based on site-specific likelihood support for phylogenetic convergence (ΔSSLS) 
( 4 ,  11 ), ratio between convergence and divergence ( 4 ,  12 ), ratio between observed and 
expected convergence ( 16 ,  17 ), ratio between nonsynonymous and synonymous convergence 
(Csubst) ( 7 ), convergence at conservative sites (CCS) ( 9 ,  15 ), amino acid profile change D
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with at least one site-level change Profile Change with One Change 
(PCOC) ( 18 ), correlation between amino acid state and quantitative 
traits Convergent Amino Acid Substitutions (CAAS) ( 19 ), etc.

 Despite many reported cases of function-related site-level con­
vergence in proteins, these existing methodologies have a major 
caveat. Effectively, all strategies focus on site-level sequence 
changes. However, it is known that GPM is complex with exten­
sive interactions between individual sites, and different sequences 
may map to similar functions ( 20 ). Hence, site-level convergence 
is not necessary for functional convergence in proteins ( 21 ). As 
an example, having adapted to the hypoxic environment, the 
hemoglobins (Hbs) of multiple high-altitude waterfowl species 
have been shown to convergently possess high Hb-O2 affinity. 
Nevertheless, the respective Hb protein sequences show limited 
site-level convergence of amino acid states, which are, moreover, 
largely not responsible for the affinity shift ( 10 ). Due to the het­
erogeneity or lineage specificity of the sequence evolution process, 
it is likely that organismal functional convergence is achieved 
through convergence of higher-order features in protein sequences, 
while exhibiting divergent site-level patterns. Indeed, there are 
cases of adaptive protein physicochemical or structure convergence 
without site-level similarity ( 22   – 24 ).

 How to detect adaptive convergence of such high-order features 
in proteins? The current conventional models of protein sequence 
evolution typically describe dynamics of single amino acid sites, 
unable to address high-order features like epistatic relations between 
sites or secondary structures. Hence, we seek the statistical capacity 
of recent pretrained protein language models (PLM), as they can 
capture context patterns of sites in the sequences, and these models 
have been shown to encode high-order protein features for pre­
dicting spatial contact, protein structures, and functions ( 25     – 28 ). 
We trained a neural network encoder on top of the fixed large 
protein language model ESM-MSA-1b to obtain fixed-length 
numerical embeddings for any protein sequence, and we demon­
strated in multiple known cases that these embeddings reflect 
high-order feature similarities of proteins with functional conver­
gence, despite the site-level divergence. We further developed an 
analysis pipeline to detect Adaptive Convergence by Embedding 
of Protein (ACEP, https://huggingface.co/NEO699700/ACEP ), 
testing for unexpected PLM embedding similarity between proteins 
of focal species lineages against a simulated null distribution. We 
applied the ACEP test to specific candidate proteins with conver­
gence for plant crassulacean acid metabolism (CAM), and to a 
genome-wide set of proteins in echolocating mammals. Alongside 
significant ACEP results observed for the known candidates, new 
putatively adaptive convergence genes for echolocation were 
enriched. We also examined possible relations between conver­
gences of PLM embeddings and specific high-order protein features 
in multiple cases. Our findings emphasized the prevalent role of 
high-order protein features in the convergent evolution of organ­
ismal functions, provided a computational framework for detecting 
adaptive protein convergence, and demonstrated the capacity of 
deep learning methodology to capture evolutionary sequence fea­
tures and facilitate the understanding of complex GPM. 

Results

Fixed-Length Embeddings Derived from Pretrained PLM Reflect 
Evolutionary Relationship between Protein Sequences. Protein 
language models are deep neural networks trained on large scale 
protein sequence datasets by the mask-prediction training strategy 
widely used in the natural language studies. We focus on the 
model ESM-MSA-1b, which explicitly harnesses the evolution 

information in multiple sequence alignments (MSAs) and has been 
reported to show better performance on tasks like protein structure 
prediction compared to PLMs with more parameters (29). The 
pretrained model is composed of 12 MSA Transformer layers with 
100 M parameters, and was trained on 26 million MSAs effectively 
spanning the UniRef database. For each protein sequence of length 
L, ESM-MSA-1b outputs a local embedding El of size L × 768, and 
a global embedding Eg0 of size 768 can be calculated by averaging 
the local one across the length (L) dimension (SI  Appendix, 
Fig. S1). Since it has been reported that averaging is suboptimal for 
global embedding derivation, we adopted a bottleneck strategy and 
constructed an encoder–decoder network with El as input, trained 
by the decoder reconstruction loss, while fixing the ESM-MSA-
1b backbone (30) (Fig. 1A). After training on 37,998 mammal 
sequences sampled from alignments in the OrthoMaM database 
(Materials and Methods), the encoder output (a vector of size 300) 
can be used as the global embedding Eg.

 To capture the molecular basis of functional convergence, 
embeddings that can reflect unexpected evolutionary similarity 
between protein sequences is needed. According to neutral theory, 
the varying levels of similarity between different orthologous 
sequences largely result from phylogenetic divergence, only occa­
sionally shaped by adaptive convergence in rare cases of a few genes 
in some taxonomic groups. Hence, embeddings suitable to detect 
adaptive convergence should also reflect phylogenetic divergence 
in most genes lacking adaptive convergence. To verify that E﻿g  
encodes such evolutionary information, we hypothesized that the 
distances between E﻿g s of pairs of species highly correlate with their 
phylogenetic distances, which reflects an evolutionary relationship. 
Indeed, for all species pairs in 3,000 randomly sampled mamma­
lian MSAs, cosine and Euclidean distances of E﻿g s have high 
Spearman correlations with phylogenetic distances, up to an aver­
age of 0.87, which are significantly higher than the correlations 
(0.69) between cosine or Euclidean distances of E﻿g0 s and phyloge­
netic distances (Wilcoxon test, P  < 1 × 10−300 ) ( Fig. 1B  ). Hence, 
the bottleneck-derived E﻿g  trained by mammal protein sequences 
seems to carry more evolutionary information for evaluating 
sequence divergence as well as convergence, and was used as the 
primary global embedding of a protein sequence in all downstream 
analyses unless specified.  

PLM Embeddings Reflect Similarity in High-Order Features of 
Proteins Despite Site-Level Sequence Divergence. To validate 
that similarity in high-order features can be reflected by PLM 
embeddings, we investigated multiple cases in which distantly 
related proteins converge to serve similar functions or adapt to 
similar environmental factors. We hypothesized that these highly 
diverged proteins may appear dissimilar at the site level, but 
manifest embedding similarity due to convergence of high-order 
protein sequence features (Fig. 1C).

 The first case is the convergence of Hbs in jawed and jawless 
vertebrates. In both cyclostome species (lampreys and hagfish, 
jawless vertebrates) and gnathostomes (jawed vertebrates), Hbs 
carry out the function of binding O2  in the blood. However, gene 
phylogeny reconstructed from amino acid sequences of vertebrates 
showed that cyclostome Hbs (cHbs) shared most recent common 
ancestor with the gnathostome cytoglobins (gCygbs) rather than 
gnathostome Hbs (gHbs) (Materials and Methods ; SI Appendix, 
Fig. S2A ; also see figure 1 in ref.  31 ). This indicates the function 
of O2  transportation in blood was convergently evolved in cHbs 
and gHbs, realized by similar oxygenation-linked cooperative 
changes of quaternary structure ( 31 ). To depict the embedding 
similarity between these proteins, we conducted principal 
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component analysis (PCA) of the E﻿g  embeddings. Intriguingly, in 
contrast to the sequence resemblance to gCygbs, cHbs (red dots 
in  Fig. 2A   and SI Appendix, Fig. S2B ) showed smaller distances 
to gHbs, particularly gHbβ (blue and green dots in  Fig. 2A   and 
﻿SI Appendix, Fig. S2B ) in PC2. In the principal component space, 
the large distances between different cHbs in PC1 were due to 
deep hagfish-lamprey divergence, and the distances between 
gCygbs in PC2 was contributed by multiple Cygb paralogs in 
bony fish species, also likely due to deep divergence after 
whole-genome duplication events (SI Appendix, Fig. S2C ). The 
cHb-gHbβ embedding similarity in PC2 thus supported their 
functional convergence. Since the PLM embeddings may reflect 
various high-order sequence features of the protein, it is reasonable 
not to expect all embedding PCs, i.e., all features to show simi­
larity between functionally convergent homologs. However, under 
neutral evolution without convergence, divergent sets of homologs 
are not expected to show similarity in any PC axis. Hence, the 
existence of cHb-gHbβ similarity in PC2 indicated nonneutral 
sequence convergence. Furthermore, we calculated the cosine E﻿g  
embedding distances between different proteins, and found that 
cHbs have smaller distances with gHbβs than with gCygbs or with 
gHbαs ( Fig. 2B  , Mann–Whitney U  test, P  < 2 × 10−37 ). The same 
was true for Euclidean E﻿g  embedding distance as well (SI Appendix, 
Fig. S2D , Mann–Whitney U  test, P  < 3 × 10−20 ). PCA and dis­
tance comparisons based on E﻿g0  embeddings exhibited similar 
patterns, showing higher similarity between cHbs and gHbs than 
between cHbs and gCygbs (SI Appendix, Fig. S2 E –G , Mann–
Whitney U  test, P  < 2 × 10−15 ). These observations support that 
PLM embeddings can reflect the functional agreement of cHbs 
with gHbs, despite site-level sequence dissimilarity. Specifically, 
our results suggest high-order feature convergence of cyclostome 
Hb with gnathostome Hbβ.        

 Second, we investigated two venom toxins in mammals and 
reptiles. It has been reported that two kallikrein (KLK)-related 
serine proteases, i.e., BLTX of the shrew Blarina brevicauda  and 
GTX of the lizard Heloderma horridum , are toxic due to higher 
catalytic activity than their nontoxic counterparts. This func­
tional convergence is likely due to similar physicochemical 

features of the catalytic cleft in these two proteins, both carrying 
unique insertions in a nearby regulatory loop ( 22 ). Corresp­
ondingly, in the PCA plots for the E﻿g  embeddings of the two 
proteins and other KLK-related homologs, we observed that 
GTX and BLTX locate near each other in PC1 – PC4 ( Fig. 2C   
and SI Appendix, Fig. S3A ). Specifically, the Blarinasins were 
clearly distant from the BLTX and GTX in at least PC2 and 
PC4, which accounted for ~24% embedding variance. This 
pattern contradicts the gene phylogeny reconstructed by the 
same protein sequences based on site-level evolution models, 
in which the Blarinasins and BLTX were closely related 
(SI Appendix, Fig. S3B ). This contrast indicated that PLM 
embeddings may reflect similarity of protein structure and phys­
icochemical features realized by distinct nonneutral sequence 
changes. PCA based on E﻿g0  embeddings exhibited similar pat­
terns, showing higher similarity between GTX and BLTX on 
PC2 (SI Appendix, Fig. S3C ). Nevertheless, in contrast to the 
PCA patterns, the cosine and Euclidean E﻿g  embedding distances 
between GTX and BLTX are not significantly smaller than those 
between the two toxins and their nontoxic homologs 
(SI Appendix, Fig. S3 D  and E ), probably due to the overall 
structural dissimilarity of BLTX and GTX not captured by 
major principal components.

 In a third case, we focused on the ferrous iron uptake in green 
plants. It has been reported that the Fe2+  uptake protein in green 
algae (Chlamydomonas ), the iron-regulated transporter 1 (CrIRT1), 
is phylogenetically close to Angiosperm Zn transporters while 
functionally and structurally convergent with the known ferrous 
iron uptake proteins in Angiosperm ( 23 ). Thus Fe2+  uptake pro­
teins evolved convergently in the zinc-regulated, iron-regulated 
transporter-like protein (ZIP) family (SI Appendix, Fig. S4A , also 
see figure 3A in ref.  23 ) Comparing the E﻿g  embedding of CrIRT1 
with those of other proteins in the family, we found that the 
CrIRT1 embedding showed smaller cosine distances with the 
Angiosperm Fe2+  uptake proteins, particularly OsIRT1 in rice, 
than with the Angiosperm Zn transporters AtZTP29 or OsZIP13, 
consistent with the known scenario of function and structure con­
vergence ( Fig. 2D  , comparing with structure similarity patterns 

A

B C

Fig. 1.   Encoder network trained 
by bottleneck strategy calculates 
evolutionarily informative global 
embedding Eg, which may reflect 
high-order feature similarity of 
divergent protein sequences. 
(A) The encoder–decoder bottle-
neck network design and training 
strategy. Input protein sequenc-
es were processed by PLM back-
bone to get local embedding El, 
which were then input into en-
coder to get global embedding Eg 
(highlighted in yellow). (B) Distri-
butions of Spearman correlation 
coefficients between embedding 
distances and phylogenetic dis-
tances. Higher coefficient values 
by using Eg distance than by us-
ing Eg0 indicate the former to be 
more evolutionarily informative. 
X axis labels indicate whether 
correlation coefficients are cal-
culated based on cosine or Eu-
clidean embedding distances. For 
each violin, the upper and lower 
bounds of the black rectangle 
represent corresponding quar-
tiles, while the white segment in 

the middle indicates the median. (C) Schematic hypothesis of how PLM embedding may reflect high-order protein feature convergence, in which case orthologous 
proteins from two divergent lineages (blue and red) in evolution may show similar embeddings.
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in figure 5A of ref.  23 ). The CrIRT1 and OsIRT1 similarity was 
not obvious when measured by E﻿g0  embedding distances 
(SI Appendix, Fig. S4B ).

 Thus, in all three cases above, we observed nontrivial embed­
ding similarity, particularly for the E﻿g  global embeddings, between 
homologous proteins separated on gene trees but similar in func­
tions. As control, we also evaluated two alternative simple simi­
larity measures, the p  distance and the BLOSUM62 score 
(Materials and Methods ), in the cases of Hbs and proteases. In 
contrast to the patterns observed on PLM embeddings, we found 
significantly smaller p  distances and higher BLOSUM62 scores 
between cHb and the closely related gCygb than between cHb 
and the gHbs (Mann–Whitney U  test, P  < 2 × 10−9 , P  < 1 × 10−46 , 
﻿SI Appendix, Fig. S5 A  and B ). Hence, simple sequence similarity 
or physicochemical similarity measures mainly reflected phyloge­
netic relationship between proteins, while PLM embeddings could 
reveal functional convergence, putatively according to the 
high-order features captured.

 Additionally, we simulated sets of negative control sequence 
alignment data for the hemoglobin case, the toxin case and the 
ferrous iron transporter case (Materials and Methods ). Simulated 
with the same gene tree topology, branch lengths, and site-specific 
evolution rates as inferred from the corresponding real data, these 
negative control data should contain no adaptive convergence signal. 
Interestingly, when the gaps in real sequence alignments were 
directly copied into the simulated alignments, the latter exhibited 
similar convergent patterns of embedding PCA or distance 

distributions as the respective real cases (SI Appendix, Fig. S5 C –F ). 
On the contrary, when simulating without gap copying, embedding 
PCA or distance distributions of the simulated sequences only fol­
lowed phylogenetic relationships as expected from the simulated 
neutral sequence evolution process (SI Appendix, Fig. S5 G –J ). This 
difference between two simulation strategies strongly indicates that 
the similarities between sequences with functional convergence were 
not the result of site-level convergence, but likely resulted from 
high-order feature convergence partially manifested as gaps in the 
sequence data.  

Proteins of Thermophilic Bacteria and Archaea Exhibit Conver­
gence of PLM Embeddings Despite Phylogenetic Divergence. In 
addition to the above cases of functional convergence in individual 
genes, we investigated the convergent evolution of proteins in 
thermophilic Archaea and Bacteria. Evidence has been found 
supporting that the common ancestor of Archaea and Bacteria 
are mesophilic (32). Hence for thermophiles in the two domains, 
although extensive horizontal gene transfer (HGT) has been 
proposed to facilitate their evolution (32), many proteins may have 
experienced convergent evolution of high-order features adapting 
to high-temperature environments (33). To check whether such 
events can be reflected by PLM embeddings, we collected protein 
alignments from the COG database (34) with orthologous sequences 
in 36 prokaryote strains, composed of 10 hyperthermophilic Archaea 
(AH), 6 hyperthermophilic Bacteria (BH), 10 mesophilic Archaea 
(AM), and 10 mesophilic Bacteria (BM) (Materials and Methods and 

A C

B D

Fig. 2.   PLM embeddings reflect high-order feature similarity of proteins despite site-level divergence. (A) PCA of Eg embeddings reflecting hemoglobin convergence 
between jawed and jawless vertebrates. Position of each dot indicates the PC1 and PC2 values of the corresponding globin protein embedding. (B) Kernel density 
plot showing the distributions of cosine embedding distances between different globin groups. The kernel density estimation (KDE) parameter bw_adjust was 
set to 0.5. (C) PCA of Eg embeddings reflecting convergence between kallikrein (KLK)-related serine protease toxins in mammal and reptile. Position of each dot 
indicates the PC1 and PC2 values of the corresponding protein embedding. (D) Heatmap showing the pairwise cosine Eg embedding distances between metal 
ion transporter proteins in green plants. The phylogeny and taxonomic information are adapted from Rodrigues et al. (23).
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SI Appendix, Table S1). Due to deep divergence, protein alignments 
of only 27 conserved genes were obtained, and we then excluded the 
possibility of HGT by requiring monophyly of both Archaea and 
Bacteria strains separated by an internal branch with bootstrap value 
higher than 60% in the gene tree. We evaluated possible protein 
convergence between thermophilic Archaea and Bacteria by testing 
whether the Eg embedding distances of AH-BH are smaller than 
those of AH-AM or BH-BM.

 Among 27 conserved genes, 15 genes exhibit monophyly of 
Archaea and Bacteria. For 9 out of these 15 genes, the distances 
between AH-BH were smaller than those between AH-AM or 
between BH-BM under both cosine and Euclidean distance 
(SI Appendix, Table S2 ). These convergent genes include six 
aminoacyl-transfer ribonucleic acid (tRNA) synthetases, ribonu­
clease HII, signal recognition particle (SRP) GTPase Ffh and SRP 
receptor FtsY. As examples, we examined the E﻿g  embeddings of 
proteins in both COG0013 (alanine-tRNA ligase) and COG0143 
(Methionyl-tRNA synthetase). While the thermophilic Archaea 
and the Bacteria sequences showed reliable divergence on both 
gene trees (red and orange taxa in  Fig. 3 A  and B  ), the E﻿g  embed­
dings of AH and BH clearly clustered together in PCAs (red and 
orange dots in  Fig. 3 C  and D  ). Correspondingly, the embedding 
distances between AH and BH were significantly smaller than 
those between AH and AM or between BH and BM (Mann–
Whitney U  test on cosine distance, P  < 6 × 10−5 ,  Fig. 3E  ; P  < 2 × 
10−11 ,  Fig. 3F  ; the same is true for Euclidean distances, SI Appendix, 
Fig. S6 A  and B , P  < 3 × 10−4 ). In addition, we observed the same 
trends of high thermophile similarities by PCA and distance dis­
tribution comparisons in both COG0013 (SI Appendix, Fig. S6 
﻿C –E ) and COG0143 (SI Appendix, Fig. S6 F –H ) based on E﻿g0  
embedding distances. In contrast, the p  distances and BLOSUM62 
scores between AH and BH were not significantly smaller than 
those between AH and AM or between BH and BM, in both 
COG0013 and COG0143 (Mann–Whitney U  test, P  > 0.2, 
﻿SI Appendix, Fig. S6 I –L ). As a negative control, we also generated 
COG0013 and COG0143 sequence alignments by simulation of 
neutral evolution, as in the previous cases. There was no higher 
embedding similarity between simulated orthologs of AH and BH 
than that of AH and AM or that of BH and BM, even when gaps 
were copied from the real data (SI Appendix, Fig. S6 M –R ). 
Meanwhile, simulated COG0013 orthologs within Bacteria and 
within Archaea exhibited higher embedding similarity than 
between two domains, consistent with corresponding phylogenetic 
divergence (SI Appendix, Fig. S6 M –O ). This confirmed the sig­
nificance of the observation in real data, and further suggested 
that the thermophile convergence of these proteins was not pri­
marily realized by gap-related structural convergence, but mainly 
by other mechanisms such as similar physicochemical properties. 
Overall, these findings indicate prevalent high-order physicochem­
ical feature convergence revealed by PLM embeddings during 
thermophile adaptation in Archaea and Bacteria despite site-level 
sequence divergence.          

Empirical Tests Based on PLM Embeddings Can Reflect Known 
Sequence Convergence in Genes Related to Functional 
Convergence. Based on the above evidence that PLM embeddings 
can reflect high-order feature convergence of proteins, we further 
designed a computational pipeline to detect ACEP. Previous 
methods detecting site-level sequence convergence usually 
compared the observed level of convergence events to a neutrally 
evolved background, such as expectation calculated by sequence 
substitution models (17) or synonymous convergences (7). In ACEP 
pipeline, sequences simulated under neutral evolution models 
served as background, which assumes that the sequences diverge 

under certain levels of evolutionary conservation, i.e., primarily 
under purifying selection due to specific functional constraints 
at each amino acid site, without lineage-specific adaptation. We 
proposed that, if orthologs of a protein experienced adaptive 
convergence in two lineages of species with organismal function 
convergence, the Eg embedding distances between orthologs of 
these two lineages should be significantly smaller than distances 
between the simulated backgrounds. Hence, for each gene, 
we inferred evolution parameters including branch lengths on 
species tree, site-wise evolution rates, amino acid equilibrium 
frequencies. Then we simulated sequence evolution by these 
parameters for 100 times (Materials and Methods). Between two 
focal lineages of species with functional convergence, the mean 
value of pairwise Eg embedding distances dreal  was calculated and 
compared with a null distribution of 100 mean distances ( d1 , 
d2 , …, d100 ) derived from the simulated replicates. An empirical  
P-value can be calculated as the proportion of di s equal to or smaller 
than dreal  . Accordingly, genes with significantly smaller dreal  than 
the empirical distribution of di  s were considered candidates of 
adaptive sequence convergence (Fig. 4A and Materials and Methods).

 We first applied this ACEP pipeline based on E﻿g  embeddings 
to two known cases of individual genes. One case is the hearing 
gene SLC26A5  (Prestin) in echolocating mammals. It is considered 
to have experienced adaptive convergence in echolocating mam­
mals, with many sites showing convergent patterns between EB 
and TW ( 9 ). Consistent with our expectation, the ACEP analysis 
was significant (empirical P﻿-value < 0.01, based on both cosine 
and Euclidean E﻿g  embedding distances) for SLC26A5  when setting 
EB and TW as focal lineages ( Fig. 4 B  and C   and SI Appendix, 
Fig. S7A ). As another existing case, CAM has evolved inde­
pendently in many lineages of plants. The phosphoenolpyruvate 
carboxylase (PEPC ) and its kinase phosphoenolpyruvate carbox­
ylase kinase (PPCK ) are key genes regulating the periodical fixation 
of CO2  at night, and they have shown sequence- or expression-level 
convergence in some but not all of the CAM species ( 35 ). The 
ACEP analysis was conducted for two monocot (Agave tequilana  
and Ananas comosus ) and two eudicot (Kalanchoe laxiflora  and 
﻿Kalanchoe fedtschenkoi ) CAM species (SI Appendix, Fig. S7B ). 
Interestingly, two isoforms PEPC1  and PEPC2  showed drastically 
different results. PEPC1  is highly expressed especially during the 
light period of the day, and was not significant in the ACEP test 
(P  > 0.7, SI Appendix, Fig. S7C ). Expression of PEPC2  is relatively 
low, but much higher during the dark period than during the light 
period. Respectively, PEPC2  was significantly convergent among 
CAM plants in the ACEP test (P  < 0.01, SI Appendix, Fig. S7D ), 
as well as PPCK  (P  < 0.01, SI Appendix, Fig. S7E ). This is consist­
ent with the previous finding that PEPC2  showed site-level con­
vergence with another CAM species not in our dataset, which may 
contribute to its increased activity in CAM plants ( 35 ).

 When substituting the E﻿g  embeddings by the E﻿g0  embeddings in 
the ACEP tests, we only observed significance on Prestin (SI Appendix, 
Fig. S8 A  and B ). Thus, the bottleneck-derived E﻿g  embeddings seemed 
to be more effective in detecting sequence convergence. Besides, our 
bottleneck encoder–decoder trained on mammalian protein sequence 
data can derive embeddings that reflect sequence convergence of 
CAM-related plant proteins. demonstrating its potential flexibility. 
In turn, we also trained the same bottleneck encoder–decoder net­
work by a comparable amount of protein sequences in vascular plants 
(Materials and Methods ). The plant-protein-trained E﻿g  exhibited high 
phylogenetic informativeness, which was nevertheless slightly lower 
than the mammal-protein-trained E﻿g  on plant proteins (Wilcoxon 
tests on Spearman correlation coefficients between embedding dis­
tances and phylogenetic distances, P  < 1 × 10−112 , green and yellow D
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violins in SI Appendix, Fig. S8C ). ACEP tests by plant-protein-trained 
﻿E﻿g  can only reflect sequence convergence in PPCK , showing marginal 
significance for PEPC2  and no significance for mammalian Prestin 
(SI Appendix, Fig. S8 D –G ). Hence, performance of the PLM embed­
dings may be affected by means of derivation and training data.

 In addition to ACEP tests based on PLM embedding distances, 
we also calculated the p  distances and BLOSUM62 scores between 
real sequences and between simulated sequences to derive empir­
ical P﻿-values for the above four proteins. Empirical tests by  
﻿p  distances were not significant for any of the four cases using the 
cutoff of P  = 0.01, but showed small P﻿-values in Prestin and 
﻿PEPC2  (SI Appendix, Fig. S8H ), which are the two cases with 

reported site-level convergence. Meanwhile, empirical tests by 
BLOSUM62 scores showed significance in PEPC1  and PEPC2 , 
and exhibited small P﻿-values for Prestin and PPCK  (SI Appendix, 
Fig. S8I ). These results indicated that the site-level physicochem­
ical similarity (BLOSUM62 scores) may reflect additional con­
vergence beyond amino acid states (as measured by p  distances), 
however to a lesser extent than the PLM embedding distances.  

The ACEP Tests Identified Known and Additional Candidate Genes 
Underlying Adaptive Convergent Evolution of Echolocation in a 
Mammal Genome. Since the ACEP analysis has demonstrated 
capability of reflecting adaptive convergence in known cases, it 

A C

B D

E F

Fig. 3.   Conserved proteins in thermophilic bacteria and archaea exhibits convergence of PLM embeddings despite phylogenetic divergence. (A and B) Maximum 
likelihood gene trees of (A) COG0013 and (B) COG0143, showing monophyly of bacteria and archaea orthologs. Numbers under each branch represent bootstrap 
values (N = 100). (C and D) PCAs of Eg embeddings reflecting convergence between thermophilic bacteria and archaea in (C) COG0013 and (D) COG0143. Position 
of each dot indicates the PC1 and PC2 values of the corresponding ortholog Eg embeddings. (E and F) Kernel density plots showing the distributions of cosine Eg 
embedding distances between different ortholog groups in (E) COG0013 and (F) COG0143. The KDE parameter bw_adjust was set to 0.5.
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was then applied to a genome-wide investigation regarding all 
available orthologous genes in echolocating mammals. We set 
the focal lineages with adaptive functional convergence to be 
EB and TW (Fig.  4B), and obtained all protein MSAs in the 
OrthoMaM v10c database which, after quality control, contain at 
least one species in both TW and EB and up to 13 echolocating 
species. Due to the length limit of the PLM input sequence, we 
segmented long protein sequences, resulting in 12,666 protein 
fragment MSAs belonging to 11,559 proteins (Materials and 
Methods). For each fragment, the TW-EB mean Eg embedding 
distance was then tested against simulated null distribution as 
described above. 769 fragments from 756 genes showed empirical 
P-value < 0.01 when cosine embedding distance was calculated. 
Functional enrichment analysis showed that the Reactome term 
Sensory Perception was significantly enriched in the 756 genes, 
with 24 associated genes (Q-value < 0.034, SI Appendix, Fig. S9A). 
Similarly, when Euclidean Eg embedding distance was calculated, 
Sensory Perception was also significantly enriched (Q < 0.035, 
SI Appendix, Fig. S9B), with 26 genes included in the 849 genes 
showing P < 0.01. The significant genes by cosine distances and 
by Euclidean distances overlap substantially among all genes (652 
genes, P < 1 × 10−300, Hypergeometric test, SI Appendix, Fig. S9C). 
These results suggested that the ACEP pipeline can enrich genes 
with adaptive convergence in echolocating mammals.

 We then focused on the genes under the term Sensory 
Perception. 22 genes were shared between the two gene sets 
obtained from respective analyses using cosine and Euclidean dis­
tances. Among these 22 common genes, there are previously 
reported echolocation-related genes such as SLC26A5  (Prestin), 
﻿CDH23 , PJVK , SLC17A8  ( 11 ,  36   – 38 ) ( Fig. 4D  ), indicating that 
the ACEP pipeline results aligned with conventional findings. In 
addition, the remaining genes in the two sets are also associated 
with echolocation-related physiological functions. For example, 
the calcium and integrin-binding protein 2 (CIB2) interacts with 
the known echolocation-related protein TMC1 ( 11 ,  36 ), and loss 
of CIB2  causes profound hearing loss and abolishes mechanoelec­
trical transduction in mouse auditory hair cells ( 39 ,  40 ). Potential 
functional relations between the significant genes and echoloca­
tion are summarized in SI Appendix, Table S3 .

 As control, we changed the focal lineage of TW to the closely 
related lineage of bovids ( Fig. 4B  ), and repeated the ACEP pipe­
line looking for convergence between EB and bovids. Although 
we found more genes with P  < 0.01 under both cosine and 
Euclidean distances (SI Appendix, Fig. S9 D  and E ), the term 
Sensory Perception was no longer significantly enriched (Q  > 0.13)  
in the control analysis. As examples of individual genes, 
﻿SLC26A5 , PJVK , CIB2,  and GSN  all showed P  < 0.01 in echo­
locating mammals, while showing P  > 0.24/0.14/0.05/0.14 in 

A

B C

D

Fig. 4.   Convergence tests on PLM embed-
dings identify known and additional can-
didate genes underlying adaptive conver-
gent evolution of echolocation. (A) Diagram 
of the ACEP test pipeline. Embedding dis-
tances between focal species groups are 
compared with a null distribution formed 
by 100 neutral evolution simulations. 
Genes with empirical P-values less than 
0.01 are considered as significant conver-
gent genes. (B) Cladogram of the 115 mam-
malian species involved in the ACEP test 
of echolocating mammals, showing major 
phylogenetic relationships between focal 
groups, which are highlighted by colors. 
(C) ACEP test result of SLC26A5 (Prestin) by 
cosine embedding distance, showing P < 
0.01. The red arrow points to the d

real
 value 

marked by a red dot on the X axis. The blue 
histogram is the distribution of mean dis-
tances derived from each of the 100 sim-
ulations. (D) Venn diagram showing the 
two sets of ACEP significant genes based 
on cosine and Euclidean distances under 
the Reactome term “Sensory Perception.” 
Previously reported echolocation-related 
genes are shown in blue. Genes under sig-
nificant positive selection in echolocating 
mammals are shown in bold.
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control. Hence, the sensory perception genes found by ACEP 
between echolocating mammals are likely to be functionally 
related to echolocation.

 To further investigate whether these putatively convergent genes 
have experienced adaptive evolution in echolocating mammals, 
we conducted a branch-site test of positive selection for the union 
of the two sets, totaling 28 genes. All branches in the clades of 
bats and TW were set as foreground ( Fig. 4B  ). Six out of 28 genes 
(SLC17A8 , MYH9 , SCN9A , GNAL , PNLIP , APOB ) were signif­
icant with Q  < 0.02 ( Fig. 4D  ). Among these genes, SLC17A8 , 
﻿MYH9 , SCN9A  have been reported to cause hearing loss ( 41   – 43 ). 
﻿APOB  expression has been observed in the inner ear perilymph 
( 44 ). GNAL  encodes a stimulatory G protein subunit Gαolf , 
expressed in striatal medium spiny neurons which is related to 
motor control and Parkinson’s disease. Mutations of GNAL  cause 
primary torsion dystonia of muscle ( 45 ). Previous studies have 
mentioned the potential adaptation of fast-twitch muscle in echo­
locating mammals for ultrasound emission ( 46 ,  47 ). These test 
results and functional relevancies suggest that the genes found by 
ACEP may have experienced adaptive convergence for the ultra­
sound emission and perception function in echolocating mammals.

 A number of different PLMs have been published during the 
progress of this study. For example, the ESM-2 model was pre­
trained on approximately 65 million unique protein sequences 
and outperforms earlier models (e.g., ESM-1b) at the same param­
eter scale in protein structure prediction. To explore the impact 
of different pretrained PLM backbones on the ACEP framework, 
we substituted the ESM-MSA-1b backbone by ESM-2, and 
trained the encoder–decoder network by mammalian sequence 
data likewise (Materials and Methods ). Interestingly, while the 
ESM-2 E﻿g0  embeddings exhibited a similar level of phylogenetic 
informativeness as the original ESM-MSA-1b, the ESM-2 E﻿g  
showed poorer phylogenetic informativeness than the ESM-MSA- 
1b E﻿g  (SI Appendix, Fig. S10A ). We then conducted ACEP tests 
by ESM-2 E﻿g . Under cutoff of P  < 0.01, we found that Prestin 
was not significant, with marginal empirical P﻿-value (SI Appendix, 
Fig. S10B ). Among the 1,305 significant genes based on cosine 
distances, the GO term “Sensory Perception of mechanical stim­
ulus” was significantly enriched (SI Appendix, Fig. S10C ), and the 
same is true among the 798 genes significant upon ACEP tests by 
Euclidean distances (SI Appendix, Fig. S10D ). Among the signif­
icant genes under this term, there existed genes found by the 
original ESM-MSA-1b ACEP tests such as LRP2 , SCN9A,  and 
﻿CDH23 . Besides, many genes known to be related to echolocation 
(e.g., OTOF ) ( 37 ), ultrasonic hearing (e.g., PIEZO2 ) ( 48 ) or hear­
ing loss (e.g., COCH , MINAR2 , CLRN2 ) ( 49   – 51 ) were included 
(SI Appendix, Fig. S10E ). Thus, unsurprisingly, different PLM 
backbones may affect the ACEP test results, and further explora­
tion in this direction is warranted.

 Given that our ACEP tests reported multiple candidate genes 
in echolocating mammals, a natural question is whether existing 
methods can detect the same convergence events. As such a bench­
mark, we applied analyses according to the CCS method ( 15 ), 
searching for CCSs in TW and two lineages of EB, with none­
cholocating bats and bovids as control groups (Materials and 
Methods  and SI Appendix, Fig. S11A ). Among the 28 sensory per­
ception genes found by ACEP tests, CCSs were found in 14 genes 
(SI Appendix, Fig. S11B ). Furthermore, since the ACEP test 
focuses on high-order features of proteins rather than site-level 
amino acid state convergence, we also recoded the 20 amino acids 
into groups with similar physicochemical states, and searched for 
CCSs with physicochemical state convergence (Materials and 
Methods ). Under two different physicochemical group delimita­
tions, we respectively observed 9 and 14 genes with CCSs among 

the 28 ACEP-identified sensory perception genes (SI Appendix, 
Fig. S11 C  and D ). Hence, current methods, even when consid­
ering site-level physicochemical features instead of individual 
amino acid states, can support some of the candidate genes found 
by ACEP test, but may not fully capture the potential convergence 
pattern of PLM-derived high-order protein features.

 The ACEP test results rely on accurate simulation of neutral 
sequence evolution that matches the real evolution process only 
without adaptive convergence. Although simulation parameters 
including site-wise evolution rates were inferred from real data, 
Markov process simulation of individual sites may not fully gen­
erate the background stochastic convergence of high-order pro­
tein features as in the real data. As an alternative strategy, we 
designed a phylogenetic permulation (phylogeny-aware permu­
tation) test inspired by the recently developed RERconverge 
expansion ( 52 ,  53 ) (Materials and Methods ). In this test, we 
permutated the focal lineage label according to trait value sim­
ulation, and derived the empirical P﻿-value of a relative distance 
(RD , embedding distance normalized by phylogenetic distance) 
from a null distribution formed by 1,000 permulations. The RD  
between two focal lineages was the minimum or mean of RD s 
between pairs of species in the two lineages (SI Appendix, 
Fig. S11E ). Due to the substantial time consumption of the 
permulation step, we tested the 30 fragments from the 28 genes 
significant in ACEP tests. Ten (by minimum RD ) or four (by 
mean RD ) genes were significant by at least one type of embed­
ding distance, including SLC26A5 , CIB2 , CDH23 , MYH9  
(SI Appendix, Fig. S11F ). Considering the small number of taxa 
with echolocation trait, the rate of binary trait change may not 
be estimated precisely, and the available combinations of per­
mulated label assignment with matching topology might be few, 
potentially leading to low power of this test. Thus, our finding 
of significant genes by the permulation test provided conserved 
evidence supporting the previous ACEP results.  

ACEP Corresponds to Convergence of High-Order Features 
of Proteins. Significant results by the ACEP test may reflect 
convergence of high-order function-related features of proteins. 
Nonetheless, information about these features is only implicitly 
encoded in the PLM embeddings. To explore the possible 
convergent features of the proteins found in the above analyses, 
we first investigated SLC17A8 as an example. A previous study 
reported two site-level convergence events (V109I and R309K) 
among five echolocating mammal species in SLC17A8 (38). 
First, we tested whether the convergence signal from ACEP was 
completely caused by site-level convergences, by masking the 
two convergent sites from the SLC17A8 MSA when calculating 
embeddings, and then rerunning the ACEP test. Consequently, 
regardless of using all 13 available echolocating species in our 
dataset or using the five species as in the original study, ACEP 
tests were still significant (P < 0.01) for SLC17A8 without the 
two sites (Fig. 5A and SI Appendix, Fig. S12 A–C). This indicates 
that protein features other than site-level convergence contribute 
to the putative functional convergence of SLC17A8.

 Next, we continued to focus on 43 protein physicochemical 
features, such as proportions of each amino acid, hydrophobicity, 
isoelectric point, and net charge density (NCD) mentioned in 
previous studies (SI Appendix, Table S4 ) ( 54   – 56 ). Values of each 
feature in the SLC17A8  orthologs of TW, EB, and bovid species 
were calculated. If there is no significant difference between the 
TW values and the EB values, and meanwhile both TW and EB 
values are significantly different from the bovid values, such 
features are considered to be convergent in echolocating mam­
mals. For SLC17A8 , we found six convergent features D
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(Mann–Whitney U  test, using Q  = 0.05 as significance cutoff), 
including proportion of arginine (R), helix (proportion of 
VIYFWL), two hydrophobicity measurements (proportions of 
FLIV or FLIVWYM), net charge (proportion of K + R - D - E) 
and NCD ( Fig. 5B   and SI Appendix, Fig. S12D ). Specifically, 
NCD has been proposed to affect protein mobility and dynamic 
changes by determining interactions with other cellular compo­
nents ( 54 ,  57 ). Among the six convergent features, four remained 
significant after excluding the two convergent sites mentioned 
above (Materials and Methods ), including NCD, net charge and 
proportion of arginine (Mann–Whitney U  test, using Q  = 0.05 
as significance cutoff). The two hydrophobic features were not 
significant mainly due to subtle Q﻿-value changes during multiple 
test correction, which was in turn caused by low power of the 
nonparametric U  tests on a small number of species in each 
group. Actually, two other features (solvent accessibility surface 
area SASA, molecular weight) turned significant upon site exclu­
sion. Meanwhile, the two convergent sites may indeed contribute 
significantly to the physicochemical convergence of the protein, 
which does not contradict effects of other sites reflected by our 
PLM embedding.

 As a control, we repeated the ACEP test and feature conver­
gence test in two paralogs of SLC17A8 , i.e., SLC17A6  and 
﻿SLC17A7 . All three genes encode vesicular glutamate transporters 
with complementary expression patterns in central neural system 
cells, and had similar lengths before (560 to 589 amino acids) 
and after (490 to 537 a.a.) sequence quality control. Conducting 
an ACEP test in SLC17A6  and SLC17A7  among 11 available 
echolocating species, we found neither paralog significant (P  > 
0.02, SI Appendix, Fig. S12 E  and F ). Meanwhile, none of the 
six convergent features in SLC17A8  showed a convergent pattern 
in control, except for hydrophobicity as proportions of FLIV in 
﻿SLC17A7 . These results consistently supported the relation 
between the significance of the ACEP tests and the convergence 
of high-order function-related features of proteins.

 Finally, for the nine genes with significant convergent embed­
ding patterns in the thermophilic prokaryotes case, we also calcu­
lated and compared the values of 43 physicochemical features in 
the AH, BH, AM, and BM groups. Taking COG0013 as an exam­
ple, the feature values of hydrophobicity as proportions of 
FLIVWYM showed no significant difference between AH and 
BH (Mann–Whitney U  test, Q  > 0.15), while the AH values were 
higher than the AM values and BH values were higher than the 
BM values (Q  < 0.0007,  Fig. 5C  ). The same convergent patterns 
were obtained for the feature sheet in COG0013 (Q  > 0.65 for 
AH-BH comparison, Q  < 0.0007 for AH-AM and BH-BM, 
 Fig. 5D  ). These two features showed the same patterns in 
COG0143 (SI Appendix, Fig. S12 G  and H ) and in most of the 
other genes with embedding convergence, together with some 
other physicochemical features (SI Appendix, Fig. S12 I  and J ). 
Intriguingly, different features tend to show significant AH-BH 
convergence in either most of the nine genes or few of them, 
suggesting some features contribute prevalently to the high- 
temperature adaptation of many thermophile proteins. These 
results agreed well with previous experimental findings that hydro­
phobic interactions contribute to protein stability and thermostable 
proteins enrich β-sheet structures ( 58 ,  59 ). Furthermore, almost 
all significant AH-BH feature convergences were observed when 
the features were simultaneously associated with principal compo­
nents of the embeddings (P  < 1 × 10−10 , Hypergeometric test, 
﻿SI Appendix, Fig. S12 I  and J ), suggesting that PLM embeddings 
were able to reflect the convergence of bona fide protein high-order 
features.   

Discussion

 In this study, we harness the capacity of recently developed PLMs, 
to investigate adaptive convergence of high-order sequence fea­
tures underlying convergent evolution of protein or organismal 
functions. We first trained a bottleneck encoder–decoder neural 

A B

C D

Fig. 5.   Genes with PLM embedding con-
vergence also show high-order physico-
chemical feature convergence. (A) ACEP 
test result of SLC17A8 by cosine embed-
ding distances masking two previously 
reported convergent sites (V109I and 
R309K) between five echolocating TW and 
eight EB, showing P < 0.01. The red arrow 
points to the d

real
  value marked by a red 

dot on the X axis, and the blue histogram 
is the distribution of mean distances de-
rived from each of the 100 simulations. (B) 
Kernel density plots of SLC17A8 protein net 
charge density distribution in three focal 
mammal groups involved in ACEP tests. 
(C) Kernel density plots of the COG0013 
physicochemical feature “hydrophobicity 
(proportion of FLIVWYM)” distribution in 
four types of prokaryotes. (D) Kernel den-
sity plots of COG0013 physicochemical 
feature “sheet” distribution in four types 
of prokaryotes. In B–D, The KDE parameter 
bw_adjust was set to 0.5.
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network to derive fixed-length embeddings Eg   from PLM outputs 
of variable lengths, and we verified that the PLM-derived embed­
dings contain information of evolutionary relationship between 
sequences. Then, in three existing cases of individual proteins with 
functional convergence and another case of multiple conserved 
proteins in thermophilic bacteria and archaea, we confirmed high 
embedding similarity corresponds to functional similarity, regard­
less of sequence divergence at the site level. This implied the fea­
sibility of quantifying the adaptive convergence of high-order 
protein features by PLM embeddings. We then developed an 
analysis pipeline, ACEP, to test whether gene PLM embeddings 
are more similar between focal taxa with functional convergence 
than simulated backgrounds. ACEP tests were significant on 
known adaptive convergent genes in echolocating mammals and 
CAM plants, demonstrating its power. Applying ACEP to a 
genome-wide search of adaptive convergent genes in echolocating 
mammals, we found significantly enriched functions such as 
Sensory Perception and additional candidate genes, such as GSN  
and SCN9A , with functional relevance and orthogonal support 
by positive selection tests. We further investigated possible high-
order physicochemical features with adaptive convergence in can­
didate genes found by PLM embeddings, and were able to observe 
ACEP significance even when site-level convergence was excluded 
from the data. Overall, our analyses demonstrated that conver­
gence of PLM embeddings can indicate adaptive convergence of 
high-order protein features.

 While our ACEP pipeline showed promising results, the overall 
strategy warrants further exploration. Despite the many methods 
developed recently, the detection of adaptive convergence is chal­
lenging in that convergence can happen stochastically during 
neutral sequence evolution. In our ACEP tests on echolocating 
mammals, many genes unrelated to the focal convergent function 
were found significant. Moreover, when the sister lineage (i.e., 
bovids) was used as control, the number of significant genes was 
even higher than that in the focal pair of echolocating mammals. 
This is also observed in previous studies focusing on site-level 
convergence ( 12 ,  60 ), possibly due to more stochastic convergence 
as a result of faster sequence evolution rate in the bovids than in 
the TW. In the ACEP pipeline, the control sequences used for 
generating the null distance distribution were simulated according 
to site-wise rates estimated from real data, but still may not fully 
account for the random convergence of high-order protein fea­
tures. Thus, the ACEP pipeline may pick up genes with stochastic 
feature convergence. As we propose the current pipeline as a proof 
of concept, we caution against asserting the ACEP results without 
further validation. In this study, we used functional enrichment 
tests to further validate the existence of candidate adaptive con­
vergent genes among all ACEP significant genes. Meanwhile, we 
have also conducted the conservative permulation test, which is 
free of sequence simulation and account for phylogenetic depend­
ency between lineages, and we confirmed the significant embed­
ding similarity of multiple candidate genes.

 Technically, the various existing PLMs differ in detailed training 
strategies and sizes of training datasets, which may lead to their 
different capacity on extracting evolutionary information. Besides, 
the method for deriving the fixed-length global embeddings may 
also affect pipeline performance. For example, the mean global 
embedding E﻿g0  seemed to capture sequence similarity between 
functionally convergent proteins in some cases, but failed in oth­
ers, indicating the bottleneck-derived embedding E﻿g  was superior 
in capturing evolutionary patterns such as convergence. We also 
observed different flexibility of the bottleneck-derived embedding 
﻿E﻿g  when trained by mammalian or plant protein sequences, and 
it seems that training on sequences of the corresponding taxa did 

not always lead to the most significant results. As the original PLM 
backbone was pretrained on very diverse proteins, to resolve spe­
cific sequence similarity within a relatively small taxonomic group, 
the bottleneck encoder–decoder may need to be trained specifi­
cally on capturing more subtle divergence between orthologous 
sequences. In this sense, the more closely related mammalian 
proteins may indeed serve as a better training data than plant 
proteins, which might explain why the mammal-sequence-trained 
﻿E﻿g  can capture plant protein convergence while the reverse is not 
true. We have also observed that using another backbone PLM 
(ESM-2) for ACEP tests obtained relevant but not identical can­
didate genes as the original backbone ESM-MSA-1b, also identi­
fying functionally related genes.

 Thus, substituting the backbone PLM and adjusting the global 
embedding derivation process may further improve the efficiency 
of this strategy. For example, some existing PLMs were pretrained 
by explicitly combining sequence data with higher-order feature 
data such as protein structures ( 61   – 63 ). Since protein structure 
may be a more direct indicator of the function than sequences, 
using such structure-aware models as backbone may improve the 
power of the ACEP framework. Moreover, considering the high 
efficiency of protein structure prediction by deep learning methods 
( 26 ,  64 ), directly evaluating structure convergence may also be a 
viable approach, although protein structure information cannot 
reflect all high-order features. With the PLM embeddings 
obtained, different distance metrics could also lead to somewhat 
different ACEP test results, as shown by the cosine and Euclidean 
distances in this study. Different distance metrics may reflect dif­
ferent aspects of protein feature similarities in the embedding 
space, which may warrant further investigation. Currently, we 
propose to explore results based on both distances. Biologically, 
the ACEP results do not explicitly indicate the mechanistic fea­
tures with putative adaptive convergence. Hence, interpretable 
machine learning methods may be applied in the future, to locate 
the exact protein features underlying adaptive functional conver­
gence. Another limitation of the current ACEP pipeline is that, 
due to distance-based test scheme, extending the pipeline to cases 
with more than two focal taxa would be challenging. Future meth­
odological development without distance comparison, e.g. directly 
evaluating the association between the embeddings and the phe­
notypes, may improve the flexibility.

 Due to complexity of biological GPM, the macroscopic or 
molecular functional convergence between individual lineages of 
species may well be caused by convergent changes at different 
facets of sequence features, i.e., at the same site, at different sites 
in the same gene, or even in different genes of the same pathway 
( 65 ). In recent years, efforts have been made to characterize molec­
ular convergence beyond site-level, including gene paralog reten­
tion ( 66 ), regulation of gene expression ( 67 ,  68 ), or sequence 
evolution rate shift ( 5 ,  69 ). Defining molecular convergence 
beyond site-level identity relies on effective extraction of high-order 
sequence features. Our results indicated that the simple sequence 
similarity measures p  distances reflected less functional conver­
gence than the physicochemically informative BLOSUM62 scores, 
which in turn were less informative than the PLM embeddings. 
Thus, our application of PLMs for this purpose substantially 
broadens the scope of detecting adaptive molecular convergence, 
by enabling high-throughput extraction of high-order protein 
features, thus contributing to more comprehensive understanding 
of the molecular mechanism underlying organismal functional 
convergence.

 Moreover, resolving the high-dimensional, complex GPM has 
long been a major challenge in molecular evolution studies. Our 
findings that PLM-extracted high-order features reflect functional D
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similarity with no site-level convergence suggest that the mapping 
between these PLM features to functions may be simpler, with 
less complexity such as epistasis. Hence, PLM-derived sequence 
features may serve as an intermediate layer in the GPM, facilitating 
its theoretical understanding and practical application such as 
protein design. With the promising capacity of deep learning 
models, innovative strategies may be developed to help us elucidate 
the genetic basis of phenotypic and functional evolution.  

Materials and Methods

Protein Sequence Data. For the example of echolocation in mammals, ort-
hologous protein sequence alignments for 14,509 genes were downloaded 
from OrthoMaM v10c (70). The corresponding tree topology was derived from 
TimeTree 5 (71). The protein alignments were first filtered by containing less than 
5% gaps and containing at least one species from each of the two foreground 
echolocating mammal lineages. The alignments with more than 100 sites after 
removing gapped positions were retained and split into segments shorter than 
1,024 according to PLM input limit. For the example of CAM plants, we sampled 
75 species from JGI Phytozome v13 (72) including four CAM species. All tran-
scripts were downloaded from available versions of genomes for the 75 species. 
The phylogeny was derived from the R package V.PhyloMaker (73). OrthoFinder 
v2.5.5 (74) was used to derive orthogroups of genes. The orthologs of focal genes 
were identified by corresponding anchor sequences and then aligned by MAFFT 
v7.505 (75). For the examples of vertebrate Hbs, serine protease toxins, acylation 
in proteases, and ferrous iron transporters, the sequences were derived following 
the source information in the corresponding original studies. For the example 
of proteins in thermophilic prokaryotes, orthologous sequence alignments were 
derived from the COG database (76). The prokaryote species were chosen accord-
ing to their growth temperature information in the BacDive database (77). See 
the SI Appendix, Supporting Text for more details of each dataset.

Protein Language Model and Bottleneck Encoder Training. The local 
embedding El of each protein sequence with size L × 768 was derived by extract-
ing the output representation from the 12th Transformer layer of ESM-MSA-1b. 
The mean global embedding Eg0 of size 768 was calculated by averaging the El 
across the length (L) dimension. The global embedding Eg was the encoder output 
of an encoder–decoder network transforming the padded 1,024 × 768 El to size 
300 and then expanding it back to a 1,024 × 768 tensor, which was decoded 
as predicted protein sequence logits by an MLMHead module. The network was 
trained by cross entropy loss on 37,998 mammal protein sequences with Adam 
optimizer. The backbone model ESM-MSA-1b was substituted by ESM-2, or 
the training data were switched to 39,519 plant protein sequences to train the 
other encoder–decoder networks mentioned in the results. See the SI Appendix, 
Supporting Text for more details of the model and training processes.

Sequence Evolution Inference, Simulation, and Positive Selection 
Detection. Phylogeny reconstructions in the three cases of individual genes 
and thermophilic prokaryotes were conducted by IQ-TREE 2.2.5 (78) under default 
settings and validated by Bayesian inference in the hemoglobin case. Negative 
control simulation was realized by alisim following IQ-TREE parameter inference. 
In the ACEP test, simulation parameters and ancestral sequences were inferred by 
PAML 4.9j (79) from each real MSA, and sequences were simulated by the Evosimz 
package in Zou et al. (80). Positive selection detection was conducted using the 
BUSTED program in Hyphy 2.5.8 (81). See the SI Appendix, Supporting Text for 
more details of the simulation and positive selection detection.

Embedding Distances, Other Sequence Similarities, and ACEP Test. The 
cosine embedding distance between two global embedding x and y was calcu-
lated as 1 − (x ∙ y)∕(|x| ∙ ||y||) . The Euclidean embedding distance was calculated 
as 2
√
(x−y)T (x − y) . For a real or simulated MSA, the mean embedding distance d 

was calculated as the mean of all pairwise distance between embeddings of two 
groups of focal species (e.g., EB and TW). For each gene, the real mean embedding 
distance dreal  and 100 simulated mean distances ( d1  , d2  , …, d100  ) derived from 
100 replicate simulations were calculated. An empirical P-value for the gene 
can be calculated as the proportion of di  s equal to or smaller than dreal  . In our 

analysis, genes with empirical P-value smaller than 0.01, i.e., dreal  is smaller than 
any simulated di  , were considered candidates of adaptive sequence convergence.

To calculate p distances and BLOSUM62 scores between a group of ortholo-
gous sequences, all orthologs were first aligned by MAFFT v7.505 (75) using the 
linsi algorithm. For p distance calculation between a pair of sequences, sites with 
gaps in both sequences were removed, and then the p distance was calculated 
as number of sites with different states divided by the total number of aligned 
sites. The BLOSUM62 scores were calculated as in the default blastp (82) raw 
score calculation based on BLOSUM62 matrix, with −11 for gap opening and 
−1 for gap extension.

Functional Enrichment Test. Functional enrichment tests on sets of significant 
genes in ACEP tests were conducted by using the online tool MetaScape version 
3.5.20240101 (https://metascape.org/gp/index.html). The whole sets of genes 
used to conduct ACEP tests after filtering were used as background in functional 
enrichment tests, with gene set size 11,559 for echolocating mammals and 11,479 
for control. For the “Analysis as species” setting, we used the default “H. sapiens.”

Application of the CCS Test and Alternative Permulation Test. Analogous 
to the original CCS method, we first assigned the two lineages of EB and the 
TW as foreground groups, and assigned the nonecholocating flying foxes, the 
bovids plus the white-tailed deer, the guinea pig, and human as background, 
i.e., outgroups (SI Appendix, Fig. S11A). An amino acid site in an alignment is 
defined as CCS if: (1) the outgroups share the same amino acid state T; (2) more 
than 2/3 of the foreground species share the same amino acid state T’ different 
from T; (3) the state T’ can be observed in both EB and TW. For the modified 
CCS method regarding site-level physicochemical similarity, we assigned amino 
acids into physicochemically similar groups, and change the definition of T and 
T’ in the above criteria from specific amino acid state to specific physicochemical 
group. The two different physicochemical group delimitations (green tables in 
SI Appendix, Fig. S11 C and D) were according to previous studies (83, 84).

In the alternative test based on trait value permulation, the permulations were 
conducted using scripts in the RERconverge GitHub repository (https://github.
com/nclark-lab/RERconverge). For each gene, branch lengths of a gene tree were 
inferred by PAML as previously described, with its topology fixed as the species 
tree. This tree and the foreground echolocating species labels were then input into 
the getPermsBinary() function of PermulationFuncs.R to conduct permulations. 
For each of the 1,000 permulations, the two monophyletic groups in the output 
were used as the permulated “foreground species.” An RD was calculated for each 
pair of species from the two groups as the cosine or Euclidean Eg embedding 
distance divided by the phylogenetic distance on the gene tree. The minimum 
or mean RD was retained, and the 1,000 minimum or mean RDs were lumped to 
form the permulated null distribution. The real minimum or mean RD between 
two echolocating groups were compared to the null distribution to get an empir-
ical P-value (SI Appendix, Fig. S11E).

Excluding Convergent Sites in SLC17A8. In the ACEP test, the two convergent 
sites in SLC17A8 were masked by the <mask> token when calculating Eg embed-
dings. When calculating values of the 43 physicochemical features, to keep the 
protein sequence length unchanged, we changed the amino acid states at position 
109 and 309 to X, except for the following cases. When calculating “instability 
index” and “gravy,” only 20 amino acid states are allowed in the sequence. When 
calculating “molecular weight,” changing amino acid to X is equivalent to removing 
the site. Thus, when calculating the above three features and the “SASA,” “NCD” 
features which depend on “molecular weight,” site 109 and 309 were directly 
removed from the sequence.

Data, Materials, and Software Availability. Source codes, model weights, 
and examples of the ACEP pipeline are available at https://huggingface.co/
NEO699700/ACEP. Previously published data were used for this work (70, 72). 
All other data are included in the article and/or SI Appendix.
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