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A B S T R A C T

While methodology for determining the mode of evolution in coding sequences has been well established,

evaluation of adaptation events in emerging types of phenotype data needs further development. Here, we

propose an analysis framework (expression variance decomposition, EVaDe) for comparative single-cell

expression data based on phenotypic evolution theory. After decomposing the gene expression variance

into separate components, we use two strategies to identify genes exhibiting large between-taxon

expression divergence and small within-cell-type expression noise in certain cell types, attributing this

pattern to putative adaptive evolution. In a dataset of primate prefrontal cortex, we find that such human-

specific key genes enrich with neurodevelopment-related functions, while most other genes exhibit neutral

evolution patterns. Specific neuron types are found to harbor more of these key genes than other cell types,

thus likely to have experienced more extensive adaptation. Reassuringly, at the molecular sequence level,

the key genes are significantly associated with the rapidly evolving conserved non-coding elements. An

additional case analysis comparing the naked mole-rat (NMR) with the mouse suggests that innate-

immunity-related genes and cell types have undergone putative expression adaptation in NMR. Overall,

the EVaDe framework may effectively probe adaptive evolution mode in single-cell expression data.

Copyright © 2025, The Authors. Institute of Genetics and Developmental Biology, Chinese Academy of

Sciences, and Genetics Society of China. Published by Elsevier Limited and Science Press. This is an open

access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Introduction

Adaptation of living organisms to their environment is realized by

evolutionary changes of phenotypes. Since the seminal finding of

high protein sequence similarity between species by King andWilson

(1975), the regulation of gene expression has been considered as a

major molecular basis underlying adaptive phenotypic divergence,

with extensive evidence reported (Gilad et al., 2006a; Carroll, 2008;

Necsulea and Kaessmann, 2014). For example, the skin-specific up-

regulation of Agouti gene expression causes a larger ventrum area

with lighter coloration in beach-dwelling deer mice, thus being ad-

vantageous and adaptive in the light-colored sand dune environment

(Manceau et al., 2011). Hence, although it remains unclear whether

gene expression evolution is dominated by neutral or adaptive
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factors, as a type of molecular phenotype, it is known that tran-

scriptomic data contain information on organismal adaptation

(Whitehead and Crawford, 2006; Fay and Wittkopp, 2008; Fraser,

2011; Hodgins-Davis et al., 2015; Signor and Nuzhdin, 2018).

Given this significant relevance and the rapidly accumulating

comparative transcriptomic data in recent years, various analysis

strategies for detecting adaptive gene expression patterns have

been developed. Apart from approaches that require genetic ma-

nipulations such as eQTL-mapping (Fraser, 2011), some studies

compared between-species divergence and within-species variation

of gene expression to evaluate adaptation (Rifkin et al., 2003;

Khaitovich et al., 2005; Gilad et al., 2006b; Whitehead and Crawford,

2006), analogous to the Hudson-Kreitman-Aguad�e (HKA) test in

sequence evolution (Hudson et al., 1987). For example, Rifkin et al.

(2003) designed consecutive tests to categorize expression pat-

terns into different evolutionary modes for 6742 Drosophila genes,

among which 1729 varied little within species but more between

species and were considered as being under species-specific
logy, Chinese Academy of Sciences, and Genetics Society of China. Published by
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selection. In another study by Gilad et al. (2006b), a linear mixture

model was used to discriminate between-species divergence of

primate gene expression and the random effect of within-species

variation. Nineteen out of 110 genes were found to show high

between-species variance relative to within-species variance, and

were considered as having experienced directional selection during

human evolution. Meanwhile, traditional evolution models of contin-

uous traits have also been widely adopted in detecting evolution

modes of gene expression, such as Brownian motion, Orn-

steineUhlenbeck and their variants (Rohlfs et al., 2014; Rohlfs and

Nielsen, 2015; Yang et al., 2019; Bertram et al., 2023). Some of

these models also explicitly parameterize the between- versus

within-species variance ratio to reflect distinct evolution modes

such as adaptation (Rohlfs and Nielsen, 2015). However, compara-

tive approaches relying on expression data from bulk assays may

share some common challenges. For example, different tissue al-

lometries in two species may appear to be differential expression,

and the same is true for different cell type compositions in the same

tissue of two species (Price et al., 2022).

Single-cell expression data provide a further layer of cell type

information, and thus could potentially avoid such biases. In the last

decade, expression data from single-cell RNA sequencing assays

have been fast accumulating, from comprehensive cell type atlases

(Regev et al., 2017; Consortium, 2018; Plass et al., 2018) to in-

vestigations of cell types in specific tissues, diseases, or develop-

ment stages (Ximerakis et al., 2019; Elmentaite et al., 2022).

Specifically, there have been comparative studies analyzing single-

cell expression data across different species (La Manno et al.,

2016; Tosches et al., 2018; Geirsdottir et al., 2019; Hodge et al.,

2019; Wang et al., 2021; Ma et al., 2022; Shafer et al., 2022;

Jorstad et al., 2023; Murat et al., 2023; Suresh et al., 2023). With cell

type inference for each single cell, the difference in cell type com-

positions is less confounding, as the inferred cell population of a

specific type can be directly compared between species. However, it

remains unclear how to identify the mode of evolution (neutral or

adaptive) using comparative single-cell expression data. In order to

demonstrate potentially adaptive cellular level changes across spe-

cies or lineages, most comparative studies focus on species- or

lineage-specific cell types (Wang et al., 2021; Ma et al., 2022; Shafer

et al., 2022; Niepoth et al., 2024) or differential expression of gene

sets (Bakken et al., 2021; Ma et al., 2022; Shafer et al., 2022; Jorstad

et al., 2023; Suresh et al., 2023). Additionally, some studies associate

differentially expressed genes (DEGs) with genome regions of high

divergence levels (Gao et al., 2022; Jorstad et al., 2023; Murat et al.,

2023). While testing for DEGs is a conventional approach to identify

sample-specific gene expression, the commonly used pseudo-bulk

or meta-cell grouping diminishes the between-cell heterogeneity in-

formation. Moreover, both neutral and adaptive evolution processes

may drive divergence of expression for an individual gene within a

specific cell type, resulting in the pattern of differential expression

(Bakken et al., 2021; Callaway et al., 2021; Lee et al., 2025). Overall,

there are few statistical frameworks for explicitly investigating the

mode of evolution reflected by comparative single-cell expression

data.

Given the aforementioned challenges in detecting adaptive

expression evolution, we explore another existing approach (Ho

et al., 2017). This approach states that important traits should

evolve slower under neutral evolution. Hence, if the between-species

divergence of a series of traits is positively correlated with the trait

importance, it is sufficient to conclude that the relatively more

important traits in the series are under positive selection. Here, the

expression level of a focal gene in different cell types can serve as

such a trait series. Next, an estimate of the trait importance is

needed. Gene expression noise is commonly considered to have

been extensively reduced by stabilizing selection (Raj et al., 2010;
2

Metzger et al., 2015). Specifically, it has been shown that conserved

genes tend to display low transcriptional noise, i.e. stronger

expression constraints (Barroso et al., 2018). Furthermore, such

constraint on noise may restrain the evolvability of gene expression

(Lehner, 2008). Thus, we reason that the within-cell-type expression

noise can reflect the trait importance, and comparing the between-

species expression divergence to the within-cell-type expression

noise across cell types may reflect the mode of expression evolution

for a gene. Specifically, if within a cell type or a group of cell types, a

gene is under stringent regulation so that its expression noise is

small, but meanwhile it exhibits large expression divergence between

species or populations, then the expression of this gene likely

experienced adaptive change in evolution.

Hence, in this study, given a single cell expression dataset with

two species or populations, we decomposed the total expression

variance into the divergence and noise for each gene in each cell

type. Under this framework, we proposed two strategies, based on

Negative Correlation (NC) or high Divergence-Variation Ratio (DVR),

to find genes exhibiting large evolutionary divergence and small

expression noise in certain cell types. The approaches were first

applied to a single-cell expression dataset of the primate prefrontal

cortex (PFC). We found specific genes showing the proposed

divergence-noise pattern and are thus candidates of adaptive evo-

lution in humans. Meanwhile, we also observed that the genome-

wide divergence-noise patterns across all genes were consistent

with a neutral mode of evolution. We reported pattern differences

across cell types, suggesting some types such as the excitatory

neurons were more subject to adaptive changes. Additional analyses

revealed significant overlap between rapidly evolving genomic re-

gions and the candidate genes, further supporting an adaptive sce-

nario. Finally, to validate the applicability of our framework, we

analyzed another case of naked mole-rat bone marrow. Putatively

adaptive gene expression patterns were identified, in consistency

with previously reported candidate cell types and functions such as

myeloid cells and innate immunity.

Results

Decomposing the expression variance to probe adaptive

evolution of gene expression in cell types across taxa

Given a comparative dataset of single-cell gene expression levels

in two evolutionarily diverged taxa (species or populations), we char-

acterize the expression divergence and noise of a gene in a defined

cell population, i.e. cell type, by decomposing the expression variance

into different components as done in Analysis of Variance (ANOVA). In

the analyses, the expression levels were used as dependent variable,

while the taxon assignment and sample identity were used as inde-

pendent variables. Specifically, the total expression variance (sum of

square, SStotal) was decomposed into three components: sum of

square variance between taxa (SSsp), sum of square variance between

samples within both taxa (SSsam) and sum of square variance between

cells within samples across all taxa (SScell taxa):

SStotal ¼SSsp þ SSsam þ SScell taxa [1]

To characterize gene expression noise in one specific focal taxon,

we also conducted decomposition for each taxon separately, sepa-

rating the taxon-specific sum of square variance between cells within

samples (SScell taxon) from the taxon-specific sum of square variance

between samples (SS0
sam):

SStaxon ¼SS0
sam þ SScell taxon [2]

Dividing the sum of squares by corresponding degrees of

freedom (DF s), we thus derived three mean square terms Dsp ¼
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SSsp=DFsp, Dsam ¼ SSsam=DFsam and Vtaxon ¼
SScell taxon=DFcell taxon. Dsp can be used to reflect the between-

taxon expression level divergence regarding the focal cell popula-

tion, while Vtaxon can reflect the gene expression noise within the

focal cell population in one specific taxon (Fig. 1A). Two strategies

were designed to identify genes with large expression divergence

and small noise in a cell type, which are candidates for adaptive

expression evolution. In the first strategy, we normalized each term

with the mean expression across the corresponding cell type in the

focal taxon, deriving Dn
sp ¼ Dsp=Exptaxon, D

n
sam ¼ Dsam= Exptaxon,

and Vn
taxon ¼ Vtaxon=Exptaxon. Then the correlation between Dn

sp and

Vn
taxon across all available cell types was calculated. Under neutral

expectation, low Vn
taxon indicates high importance or strong con-

straints of the gene expression in the cell type, leading to low Dn
sp and

positive Dn
sp ~ Vn

taxon correlation. Significant negative correlation in-

dicates that the gene shows higher divergence in the cell types where

its expression noise is under stronger constraint, suggesting taxon-

specific adaptation of the expression level in these cell types

(Fig. 1B). To eliminate the possibility that the high between-taxon

divergence is due to stochastic technical variation among samples,

we further excluded genes with significant positive correlation be-

tween Dn
sp and Dn

sam, as well as those with significant negative cor-

relation between Dn
sam and Vn

taxon (see Materials and Methods). This

strategy is denoted as Negative Correlation (NC). Although
Fig. 1. Decomposing the expression variance to probe adaptive evolution of gene express

represent sum of square variances. DF represent corresponding degree of freedom. B and C:

in certain cell types. NC strategy based on the negative correlation between Dn
sp and Vn

taxon a
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straightforward, the significance of this NC strategy may suffer from

genes with expression in only a small number of cell types. Hence in

the second strategy, the ratios of Dsp to Vtaxon were calculated for all

(gene, cell type) pairs (hereby denoted as GC pairs) and directly

compared. GC pairs with high Dsp=Vtaxon ratios were considered as

candidates for taxon-specific adaptation of the expression level

(Fig. 1C). Meanwhile, we exclude genes with high Dsam=Vtaxon ratios

in order to mitigate the effects of between-sample variations (see

Materials and Methods). This strategy is denoted as DVR, i.e.

Dsp=Vtaxon Ratio. For convenience, we denote the overall framework

of Expression Variance Decomposition as EVaDe.
EVaDe strategies identified candidate genes with potential

cell-type-specific adaption in human PFC

The complex cell type composition of the brain has been a focus

of recent researches by single-cell analyses. Specifically, the

evolutionary specialization of primate, especially human brain is

considered an adaptation through the gain of cognitive abilities.

Thus, we analyzed a recent single-nucleus RNA sequencing dataset

of the primate dorsolateral prefrontal cortex (dlPFC) (Ma et al., 2022),

which has been associated with primate cognitive adaptation, to

investigate if our proposed framework can reflect adaptive gene

expression divergence in certain cell types. From the original dataset,
ion in cell types across taxa. A: Decomposition of single-cell expression variance. SS

Two EVaDe strategies to identify genes with large expression divergence and small noise

cross cell types (B). DVR strategy based on the ratio of Dsp to Vtaxon (C).
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we derived expression profiles of 28,216 genes in 45,000 cells (see

Materials and Methods; Fig. S1A), previously annotated and

assigned to 25 cell types existing in both human (Homo sapiens) and

rhesus macaque (Macaca mulatta). By the NC strategy with human

as the focal taxon, we found that 575 genes (hereby denoted key

genes) showed significant Dn
sp ~ Vn

human negative correlation and

meanwhile showed no significant Dn
sam ~ Vn

human negative correlation

or positive Dn
sp ~ Dn

sam correlation (significance cutoff Q < 0.05). In

comparison, we repeated the NC analysis by using macaque as focal

taxon (substituting Vn
human by Vn

macaque in the analysis), and found a

comparable number of 563 key genes (Figs. 2A and S1B; Table S1).

Next, we conducted DVR strategy analysis with human as focal

taxon. We found 393 key genes with high Dsp=Vhuman ratio (ranking

top 0.5%) and low Dsam=Vhuman ratio (ranking below top 5%). Be-

sides, DVR analysis with macaque as focal taxon obtained 283 key

genes (Figs. 2A and S1C; Table S1). The intersect of human NC and

DVR key genes contained 24 genes, significantly more than randomly

expected (P < 5 � 10�4, Hypergeometric test).

To examine if the key genes are likely candidate genes for human

cognitive adaptation, we then conducted functional enrichment

analysis on the key genes found in the NC and the DVR analyses.

Functional enrichment tests based on Gene Ontology (GO) found that

the human NC key genes showed significant enrichment in terms

including “fatty acid beta-oxidation” and “ncRNA processing”, which

are not observed in GO enrichment results of macaque NC key genes

(Fig. 2B; Tables S2 and S3). Many key genes belonging to “fatty acid

beta-oxidation” have previously reported associations with brain

development and neuronal diseases (Heimer et al., 1993; Bryleva

et al., 2010; He et al., 2011; Mizuno et al., 2013; Baloni et al., 2021;

Luo et al., 2021). For example, ACAA1 belongs to the acetyl-CoA

acyltransferase family and interacts with another associated key

gene TYSND1. It participates in the peroxisomal fatty acid b-oxida-
tion of very-long-chain fatty acids, and its missense mutation causes

early-onset Alzheimer’s disease with cognitive decline (Luo et al.,

2021). Correspondingly, we found that ACAA1 exhibited a signifi-

cant Dn
sp ~ Vn

human negative correlation across different PFC cell

types, showing low Vn
human and high Dn

sp mainly in excitatory neuron

cell types such as L2e3 IT (Fig. 2C). This is also true for most other

related key genes (Fig. S2A). Similarly, the role of non-coding RNA

processing in cognition, brain development, and neurodegeneration

has also been extensively discussed (Qureshi and Mehler, 2011;

Barry, 2014; Salta and De Strooper, 2017). Examples of related key

genes include the INTS1, INTS10 and ELP2. INTS1 and INTS10 are

subunits of the RNA polymerase II-associated Integrator complex,

which is associated with transcription regulation, neural cell type

differentiation and neurodevelopmental syndromes (Oegema et al.,

2017; Zhang et al., 2019, 2025). ELP2 is a core subunit of the Elon-

gator complex that is also associated with RNA polymerase II, and its

mutations lead to neurodevelopmental phenotypes such as intel-

lectual disability (Cohen et al., 2015; Kojic et al., 2021). Both genes

showed significant Dn
sp ~ Vn

human negative correlation with excitatory

neuron cell types displaying low Vn
human and high Dn

sp, which is also

true for most other related key genes (Figs. 2D and S2B). The human

key genes and the macaque key genes were identified based on the

same large human-macaque expression divergence (Dn
sp), and both

gene sets may have conserved expression noise (Vn
human or V

n
macaque)

differences between cell types. Thus, we reasoned that the GO terms

enriched in both key gene sets likely indicated genes with conserved

function in the two species alongside adaptive expression diver-

gence. These terms were mainly related to cilium organization

(Table S2), and many associated key genes (e.g., IFT172, CEP63,

BBS4, DYNC2LI1, WDR19; Figs. 2E and S2C) were components of
4

the primary cilia, which has been shown to be essential in cortical

development and neuronal differentiation (Guo et al., 2015; Youn and

Han, 2018). For example, mutations in CEP63 have been associated

with developmental dyslexia and white matter volume (Einarsdottir

et al., 2015). These findings suggest that the key genes with nega-

tive correlation between expression divergence and noise may have

experienced adaptive evolution, contributing to human-specific

cognitive functions in cell types like excitatory neurons.

The functions of human key genes found by the DVR strategy

were enriched in GO terms explicitly related to brain development,

specifically in axonogenesis, which are not observed in GO enrich-

ment results for macaque DVR key genes (Fig. 2F; Tables S4 and S3).

An example of key genes associated with both terms is ROBO1,

which is regulated by another key gene SLIT2 and participates in

neocortex neuron proliferation, axon guidance, and neuron migration

during development (Andrews et al., 2006; Yeh et al., 2014). Muta-

tions in ROBO1 and another key gene KIAA0319 have also been

associated with language and mathematics ability in developmental

dyslexia (Mascheretti et al., 2014). In the DVR analysis, ROBO1

exhibited a highDsp=Vhuman ratio and lowDsam=Vhuman ratio in the cell

type L3-5 IT-2, thus designated as a key gene (Fig. 2G). Other key

genes were related to high Dsp=Vhuman ratio in other cell types, such

as the neurodevelopmental gene CNTN6 (Hu et al., 2015) in L3e5 IT-

1, L3e5 IT-3, and L6 IT-1 (Fig. S2D). The GO enrichment results for

macaque DVR key genes were largely different, but still share sig-

nificant terms in the Cellular Component (CC) category such as

“dendritic shaft”, involving common key genes such as NLGN1

(Table S4), whose expression in specific neuron subpopulations was

known to modulate memory formation and strength (Katzman and

Alberini, 2018). Among the 24 human key genes significant in both

NC and DVR analyses, many were related to fatty acid metabolism,

neuronal differentiation and cognitive functions (Daneshmandpour

et al., 2018; Wu et al., 2024).

Various validation analyses supported the findings of the

EVaDe strategies in human PFC

As a potential confounding factor, we tested the impact of gene

expression, which has been associated with many genomic patterns.

For example, the faster divergences at protein sequence level and

expression profile level have been related to low gene expression

levels (Liao and Zhang, 2006; Zhang and Yang, 2015). Are the NC and

DVR key genes also of lower expression levels? To answer this

question, we investigated the expression of the key genes discovered

under the NC and the DVR strategies, in the respective cell types with

highest Dsp=Vhuman ratio for each gene (see Materials and methods).

We found that they were relatively highly expressed compared to all

genes in their highest Dsp=Vhuman cell types (Fig. S3A). This supported

that the expression divergences of the key genes are not due to sto-

chastic expression drift. Interestingly, the mean expression level dif-

ferences of these NC and DVR key genes between human and

macaque exhibited different patterns, with the NC key genes showing

higher human expression and the DVR key genes showing large

variation alongside lower human expression (Fig. S3B). This suggested

that the two strategies may be sensitive to different genes. Since the

NC strategy requires an expression-related pattern across multiple cell

types, its findings may be constrained to genes with more conserved

expression and functions, and adaptation led to consistently higher

expression in human than those in macaque. Furthermore, were the

functional enrichment we observed in DVR analysis dominated by

lowly expressed key genes? To test this possibility, we excluded

genes with normalized expression level lower than 0.2, and conducted

GO enrichment tests with the remaining 216 key genes in human DVR



Fig. 2. EVaDe strategies identify candidate genes with potential cell-type-specific adaption in human PFC. A: Number of key genes identified using the NC and DVR strategies. Orange

bars represent gene numbers using macaque as focal taxon, while blue bars represent gene numbers using human as focal taxon. B: GO enrichment analysis results of NC key genes

identified in human and macaque. Terms with adjusted P < 0.05 are shown. CeE: Characterization of NC key genes ACAA1 (C), INTS1 (D), and CEP63 (E). Scatter plots (left panels)

display negative correlation between Dn
sp and Vn

human across different cell types. Box plots (right panels) show the distributions of mean expression levels (mean log-normalized counts

across cells) for the key gene across cell types within each major cell class (excitatory neurons, inhibitory neurons, and non-neuron cells) in human. The lower and upper edges of a box

represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line inside the box indicates the median (md), and the whiskers extend to the most extreme values inside

inner fences, md ± 1.5 (qu3 � qu1). F: GO enrichment analysis results of DVR key genes identified in human and macaque. The top 10 GO terms in each case are displayed in order of

the adjusted P values. G: Characterization of the DVR key gene ROBO1, plotted in the same manner as panel (CeE). ExN, excitatory neurons; InN, inhibitory neurons; NonN, non-neuron

cell types. See Materials and Methods for the full cell type names corresponding to the cell type labels in panels (CeE) and (G).

T. Qin, H. Zhang and Z. Zou Journal of Genetics and Genomics xxx (xxxx) xxx
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results and 109 key genes inmacaque DVR results. These human DVR

key genes were still enriched in neurodevelopment-related GO terms

such as “neuron projection morphogenesis” (Q < 0.05, nominal

P < 2� 10�4), which were not observed in the GO enrichment analysis

of the 109 macaque DVR key genes (nominal P > 0.04; Fig. S3C;

Tables S5 and S3). Meanwhile, many key genes in the previous human

DVR results remained as key genes after applying the expression level

cutoff of 0.2, such as ROBO2 and FGF13, both related to neuro-

development and cognition (St Pourcain et al., 2014; Pan et al., 2021).

To further investigate the potential impact of different background

gene sets in the human and macaque GO enrichment tests, we

repeated the analyses here, setting the background as the union of the

two background gene sets. The results in Fig. S3C were virtually un-

changed (Fig. S3D), excluding the possibility that the human versus

macaque GO enrichment differences were caused by different back-

grounds. Finally, to validate that between-cell-type differences in

expression level do not dominate the NC test results, for two key genes

ACAA1 and INTS1, we normalized the expression in all available cell

types to the same level as the cell type with the lowest non-zero

expression, and repeated the NC tests. We found that both genes

still exhibit significant Dn
sp-V

n
human negative correlations (Fig. S3E), with

the cell type rankings of Dn
sp and Vn

human similar to the original patterns

(Fig. 2C and 2D). Thus, our findings of the key genes held true inde-

pendent of the between-cell-type gene expression level differences.

We chose to compare human and macaque for the reason that,

sufficient level of expression divergence would ensure the power of

adaptive pattern detection. Theoretically, human-specific expression

adaptation should also be identified in more closely related species

pairs. Hence, we replicated the NC and DVR analyses on 40,000 cells

of human and chimpanzee (Pan troglodytes). Among the same

28,216 genes in 25 cell types, with human as the focal taxon, NC

strategy identified 465 key genes, and DVR strategy found 282 key

genes. The two sets of key genes showed significant overlap with the

respective human-macaque key genes (81 and 43, P < 1 � 10�300,

Hypergeometric test). GO enrichment tests led to few functional

enrichments of the NC key genes (Fig. S3F). This is consistent with

the previous indication that NC strategy was more sensitive to

conserved gene expression changes, which were more challenging

to detect between the much more recently diverged human and

chimpanzee. In contrast, the DVR key genes exhibited enriched GO

terms similar to those found among human-macaque key genes,

including “neuron recognition” and “axonal fasciculation” (Fig. S3F)

and involving the same key genes such as CNTN6 (Table S6). Hence,

with lower level of divergence and probably less power in reflecting

adaptation, the human-chimpanzee comparison results reassuringly

corroborated the initial findings in human-macaque comparison.

To compare with existing methods for gene expression adapta-

tion, we adopted the Expression Variance and Evolution (EVE) model

(Rohlfs and Nielsen, 2015) for human-macaque comparison. Since

EVE was developed for tissue expression data, we pooled all cell

types together and tested whether the expression of each gene

showed significantly high between-species divergence based on its

within-species variation (see Materials and Methods). In total, we

found 958 genes with Q < 0.05. While these genes show certain level

of overlap with the NC/DVR key genes (15% and 6%), GO enrich-

ment analysis resulted in vastly different functional terms from those

of the key genes, mainly related with cotranslational protein targeting

(Fig. S3G and S3H). Thus, with cell-type-specific information, our

single cell analysis framework may discover novel candidates for

expression adaptation.

To validate the findings in the human-macaque comparison, we

conducted three more analyses. First, we independently repeated

the sampling of 45,000 cells from the original dataset, and conducted

the NC and DVR analyses with human as the focal taxon to check if
6

the results were robust to data sampling. Consequently, 555 and 403

key genes were found in the two analyses, among which 402 and 285

(�70%) overlapped respectively with the previous NC and DVR key

genes. Besides, the GO enrichment analyses recapitulated the pre-

vious results, featuring cilium-related terms and axon development

terms (Fig. S3I and S3J). The key gene overlap and functional

enrichment of the resampled cell dataset demonstrated the robust-

ness of the method’s results against possible data heterogeneity.

Second, the cell types used in analysis may have evolutionary

relatedness, rendering the correlation biased in the NC strategy.

However, such relatedness is theoretically and technically hard to

quantify for a standard phylogenetic regression. Technically, a tree

based on expression distances effectively eliminates similarity be-

tween cell types, regardless of whether it results from evolutionary

history or functionality. Theoretically, the expression differences

between cell types are realized by major transitions of regulatory

circuits during development, which can hardly be attributed to

evolutionary contingency, but mostly result from functional adapta-

tion. Consequently, NC analysis with phylogenetic regression by

expression similarity would be over-conservative. Nonetheless, we

conducted NC analysis with human as focal taxon based on Phylo-

genetic Least Square (PGLS, see Materials and Methods), and ob-

tained 319 key genes, among which 288 (90.3%) also appeared in the

original 575 NC key genes, including many previously mentioned key

genes such as INTS1, CEP63, IFT172, and BBS4. Although GO

enrichment analyses did not find significant terms withQ < 0.05, top-

ranked terms such as “ncRNA processing” (P < 0.0002) exhibited

nominal significance. Hence, we think the conservative NC analysis

by PGLS still partially reflected the original patterns and supported

our findings.

Third, as a negative control, we shuffled the sample labels

randomly among all cells in each cell type, and repeated the NC and

DVR analyses to exclude the possibility that the key gene assignment

was artifactual due to potential biases. Consequently, we found only

one NC key gene (RP11-35L17.3) and 1203 DVR key genes (from

1239 GC pairs). The excessive amount of DVR key genes was likely

due to reduced overlap between the genes with high Dsp=Vtaxon ratio

and the genes with high Dsam=Vtaxon ratio after random shuffling.

These shuffled DVR key genes and the real DVR key genes showed

no significant overlap (P > 0.9, Hypergeometric test), and GO

enrichment analysis resulted in no significant terms. Hence, our

findings of the human-macaque comparison were not the results of

potential technical biases.

To summarize, the human-specific enrichment of cognition-

related biological processes and these functionally related key

genes indicated that the NC and DVR strategies can reflect candidate

genes involved in the cell-type-specific adaptation of gene expres-

sion during human PFC evolution.
The overall pattern of divergence and noise revealed genome-

wide neutral modes of expression evolution

While we observed the expression of multiple genes showed Dn
sp

~ Vn
human negative correlation or high Dsp=Vhuman ratio, suggesting

adaptation under directional selection, previous studies support an

overall mode of stabilizing selection for gene expression (Rifkin et al.,

2003; Hodgins-Davis et al., 2015). To validate the genome-wide

evolutionary mode under our EVaDe framework, we lumped 12,639

genes expressed in all 25 cell types together and investigated the

relationship between Dn
sp and Vn

human (Fig. 3A; see Materials and

Methods). We found a strong positive correlation between the mean

Dn
sp’s and the mean Vn

human’s across these cell types (Pearson’s

r ¼ 0.67, Spearman’s r ¼ 0.68, both P < 3 � 10�4). Hence among



Fig. 3. The overall pattern of divergence and noise reveals genome-wide neutral modes of expression evolution. A and B: Scatter plots of (A) mean Dn
sp versus mean Vn

human and (B)

mean Dn
sam versus mean Vn

human across 12,639 genes exhibiting conserved expression in all 25 cell types. Dots representing different cell types are colored according to their cell type

classes (excitatory neurons, inhibitory neurons, and non-neuron cells). C and D: Histograms of Pearson correlation coefficients between (C) Dn
sp and Vn

human (D) Dn
sam and Vn

human across

cell types with non-zero expression for all genes (N ¼ 21,558). Significant negative or positive correlations (Q < 0.05 by Benjamini-Hochberg correction) are highlighted respectively in

blue or orange. Sig., significant. Non-sig., non-significant.
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genes with conserved expression across all PFC cell types, larger

divergence was observed in cell types with a high expression noise,

corresponding to low expression constraint. This overall pattern of

expression evolution is consistent with a neutral evolution scenario

under a possible level of stabilizing selection. Notably, the neuron cell

types tend to show small average Dn
sp and Vn

human, especially the

excitatory neurons, while the non-neuron cell types display varying

patterns (Fig. 3A). The endothelial cells (Endo) and microglia cells

(Micro) simultaneously showed higher Dn
sp and high Vn

human than most

other cell types, while cell types such as immune cells (Immune) and

vascular leptomeningeal cell (VLMC) showed low Dn
sp alongside with

high Vn
human. Interestingly, when plotting the relationship between

Dn
sam and Vn

human as a control, we found that the overall relationship

was more heterogeneous across cell types (Pearson’s r ¼ 0.90,

P < 6 � 10�10; Spearman’s r ¼ 0.65, P < 4 � 10�4; Fig. 3B). Relative

to the pattern in Fig. 3A, the Dn
sam of excitatory neurons tend to be

higher than those of the inhibitory neurons, and the Dn
sam ~ Vn

human

linearity among non-neuron cell types was stronger than that of Dn
sp ~

Vn
human (Fig. 3B). Specifically, the Immune and VLMC cell types do not

show low levels of Dn
sam. Taking the Dn

sam ~ Vn
human pattern as refer-

ence, these differences indicate that regarding the genome-wide

between-taxon expression divergence (Dn
sp) of all genes, some cell

types such as the excitatory neurons, immune cells and VLMC may

have undergone stronger stabilizing selection. Alternatively, we note

that the Immune cell type is likely a mixture of various cell types,

possessing higher heterogeneity than other cell types analyzed here.

This may also contribute to the high Dn
sam observed. Similar to these

mentioned patterns, considering all genes expressed in at least one

cell type, the Dn
sp ~ Vn

human trend and the Dn
sam ~ Vn

human trend are also

different, confirming the gene expression evolution modes found

above (Fig. S4A and S4B; see Materials and methods).
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To further validate the genome-wide mode, we evaluated the

Pearson correlation coefficients of Dn
sp ~ Vn

human and of Dn
sam ~ Vn

human

for each gene among cell types with non-zero expression (Fig. 3C

and 3D). More genes showed significant Dn
sp ~ Vn

human negative cor-

relation (Fig. 3C) than showing significant Dn
sam ~ Vn

human negative

correlation (Fig. 3D), putatively corresponding to our key genes with

adaptive expression evolution. Nevertheless, most genes showed

positive correlations between Dn
sam and Vn

human, reflecting a baseline

trend of stochastic variation among samples (Fig. 3D). Similarly, most

genes showed positive or non-significant correlations between Dn
sp

and Vn
human, corresponding to a neutral evolution scenario with

possible stabilizing selection (Fig. 3C). The overall Dn
sp ~ Vn

human

correlation patterns confirmed that the expression of most genes

evolve under a neutral scenario with stabilizing selection, while our

putative key genes show a different mode.
The excitatory neurons displayed strong signals of adaptive

expression evolution in human PFC

Single cell data enable us to shift the point of view from genes to

individual cell types. Thus, which cell types have experienced more

expression profile adaptation during human PFC evolution? In the

above analyses, most key genes exhibited high between-taxon

expression divergence and low within-cell-type expression varia-

tion in neuron cell types, especially excitatory neurons (Figs. 2 and

S2). Hence indeed, distinct cell types may have evolved under

different amounts of directional selection pressure on expression. To

validate this difference, we first counted the number of key genes

associated with each cell type in the DVR analysis. An obvious

pattern is that most excitatory neuron cell types ranked higher than

any of the non-neuron cell types. Cell types associated with more



Fig. 4. The excitatory neurons displayed strong signals of adaptive expression evolution in human PFC. A: Bar plots of DVR key gene numbers associated with each cell type. The cell

types are ranked from the largest associated key gene numbers to the smallest. The inset shows the union numbers of associated key genes across cell types in each cell type class.

ExN, excitatory neurons; InN, inhibitory neurons; NonN, non-neuron cells. B: Box plots showing the Dsp/Vhuman ratio distributions of all genes with Exphuman > 0.01 in each of the 25 cell

types. Green triangles indicate mean values. C: Cell types ranked by Dn
sp and Vn

human for each NC key gene. The left scatter plot shows Dn
sp versus Vn

human values across different cell

types in the human PFC for INTS1 as schematic example. Heatmaps display the ranking of cell types by Dn
sp (middle panel) and Vn

human (right panel). Each row corresponds to a key gene

and different rows are clustered by UPGMA algorithm on Euclidean distances. D and E: Box plots summarizing the relative (D) Dn
sp and (E) Vn

human ranks of each cell type in all genes with

non-zero expression. In all panels, excitatory neurons are indicated in blue, inhibitory neurons in green, and non-neuron cells in red. For panels (B), (D), and (E), the lower and upper

edges of a box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line inside the box indicates the median (md), and the whiskers extend to the most extreme

values inside inner fences, md ± 1.5 (qu3 � qu1).
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than 50 key genes include L6 IT-2, LAMP5 LHX6, and L5-6 NP

(Fig. 4A). In contrast, the Immune and VLMC cell types were each

associated with only one key gene, consistent with their low Dn
sp

levels in Fig. 3A. Similarly, previous analysis by Jorstad et al. found

the most human-specific DEGs in excitatory neurons and the fewest

in non-neuron cell types, and they attributed this pattern to fewer

expressed genes in the latter (Jorstad et al., 2023). However, the

fraction of associated key genes in all expressed genes (Fig. S5) also

exhibited a very similar pattern as in Fig. 4A. Next, we plotted the

distribution of Dsp=Vhuman ratios of all genes expressed in each cell

type, and again observed that the excitatory neurons showed higher

ratios than those of the inhibitory neurons, which were in turn higher

than the ratios of the non-neuron cell types (Fig. 4B).

In the NC analysis, for virtually all the 575 key genes we found with

human as focal taxon, the ranks of Dn
sp across all cell types tend to be

high for excitatory neurons, medial for inhibitory neurons, and low for

non-neuron types. Meanwhile, the Vn
human ranks displayed the

opposite pattern (Fig. 4C; see Materials and methods). Furthermore,

across all genes, we summarized the relative Dn
sp and Vn

human ranks of

each cell type among cell types with non-zero expression for each
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gene (see Materials and Methods). Non-neuron cell types exhibit

diverging relative Dn
sp ranks, with microglia cells ranking the highest

among all types and VLMC ranking the lowest (Fig. 4D). Neverthe-

less, excitatory neurons tend to have higher rankings at least

compared to inhibitory neurons. The relative Vn
human ranking pattern

across all genes resembled that of the key genes (Fig. 4E). Addi-

tionally, we note that the high Dn
sp and low Vn

human ranks of excitatory

neurons in NC key genes were not solely caused by expression level

differences among the three cell type classes, since not all these

genes showed high excitatory neuron expression (Fig. S2A and S2B).

Overall, these observations indicate that the gene expression of

excitatory neurons may have experienced more prevalent and

stronger adaptive divergence, driven by directional selection, during

the evolution of the human lineage (hominoids).

The key genes were associated with rapidly evolving non-

coding elements (RECNEs) in human evolution

The change of gene expression during evolution most likely re-

sults from sequence changes in regulatory elements. Recently, there
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have been multiple studies delimiting conserved genome regions in

multiple taxa with rapid evolution in the lineages of interest (Sackton

et al., 2019; Bi et al., 2023; Keough et al., 2023; Zhuang et al., 2023),

demonstrating that these “accelerated regions” are associated with

lineage-specific adaptation. To support our findings on expression

patterns by orthogonal sequence-level signals, we extracted 1109

conserved noncoding elements with rapid evolution (RECNEs) spe-

cific to the human lineage from a comparative analysis across 52

primate species (Shao et al., 2023; Zhuang et al., 2023). Then, we

searched for the nearest protein-coding genes within the 100 kb

flanking regions of the RECNEs as flanking genes (see Materials and

methods). Out of 14,914 background genes with normalized

expression levels over 0.01 in the DVR analysis, 343 were identified

as flanking genes. Among these flanking genes, 28 of them belonged

to the 341 protein-coding key genes we found. By hypergeometric

test, this enrichment of key genes in RECNE flanking regions is sig-

nificant (P ¼ 6 � 10�9; Table 1), indicating that the expression

changes of the key genes are related to rapidly evolving sequences

with putative regulatory significance. Among these key genes in

RECNE flanking regions, there were previously discussed candidates

related to neurodevelopment and cognition, such as ROBO1/2,

NLGN1, and FGF13 (Tables S4 and S5).

Apart from protein-coding key genes, we also tested separately

whether non-coding key genes also showed enrichment near

RECNEs. We found six non-coding genes out of 49 were located in

RECNE flanking regions, significantly more than expected (Table 1).

Furthermore, we excluded lowly expressed genes by requiring

normalized expression level greater than 0.2 and still observed sig-

nificant enrichment of key protein-coding genes near RECNE

(Table 1). The insignificance of non-coding genes is probably due to

their overall low expression compared to protein-coding genes. For

NC analysis results, we found no enrichment of protein-coding

genes, but enrichment of non-coding genes, near the RECNEs

(Table 1). We also conducted the same tests on the macaque key

genes, observing significant overlap between protein-coding DVR

key genes and RECNE flanking regions at different expression level

cutoffs (P < 1 � 10�5; Table S7). This is again consistent with the

point that the macaque key genes were also defined on large human-

macaque divergence in certain cell types, hence may be associated

with human-specific RECNEs. In contrast, the DVR key genes found

in the shuffling control, albeit in large numbers, were not enriched

around RECNEs (P > 0.8; Table S7). To summarize, the putatively

adaptive expression changes of the key genes found in our analysis

were partially supported by their significant association with rapidly

evolving genome regions nearby.
Case study of the EVaDe analysis on naked mole-rat found key

genes related to lineage-specific immune adaptation

To validate our decomposition framework for investigating

adaptive gene expression change, we conducted another case study

on a comparative single cell expression dataset of the naked mole-

rat (Heterocephalus glaber, hereby denoted as NMR) and the

mouse (Lin et al., 2024). The NMR has been known and extensively
Table 1

Coincidence of key genes near rapidly evolving non-coding elements (RECNEs) in human

Analysis Gene type Background RECNE fla

DVR (Exp. > 0.01) Protein-coding 14,914 343

DVR (Exp. > 0.01) Non-coding 3973 140

DVR (Exp. > 0.2) Protein-coding 8700 269

DVR (Exp. > 0.2) Non-coding 679 58

NC Protein-coding 16,432 366

NC Non-coding 7956 219
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studied for its prolonged lifespan, resistance to cancer and lack of

age-associated mortality increase, attributed to their specialized

immune system compositions and functions (Hilton et al., 2019; Lin

et al., 2024). Hence in the NMR-mouse scRNA-Seq dataset, we

extracted expression levels of 15,168 genes in 30,000 bone marrow

cells belonging to 10 major cell types based on cell abundance.

These included 9000 lymphoid lineage cells (B cell, immature B cell,

pre-T cell), 15,000 myeloid lineage cells (promyelocyte, myelocyte,

metamyelocyte, neutrophil, monocyte), and 6000 erythroid lineage

cells (erythroid and red blood cell, i.e. RBC). We then applied the NC

and DVR analyses comparing NMR and the mouse, with NMR as the

focal taxon. In NC analysis, we identified six key genes exhibiting

significant Dn
sp-V

n
NMR negative correlations across 10 cell types:

1810065E05Rik, Zdhhc12, Pfdn6, Trappc4, Gng10, and Arhgef11.

Notably, the functions of these genes are associated with immune

responses to bacteria or cancer. For instance, 1810065E05Rik,

which displayed the highest Dn
sp and lowest Vn

NMR in myelocytes

(Fig. 5A), has been shown to experience significant expression in-

crease in response to intestinal Lactobacillus introduction or bladder

Gardnerella exposure in mice (Archambaud et al., 2012; Gilbert et al.,

2022). Moreover, Trappc4, also displaying high Dn
sp and low Vn

NMR in

myelocytes (Fig. 5B), regulates the intracellular localization and

expression of PD-1 ligand 1 (PD-L1), thus affecting anti-tumor im-

munity (Ren et al., 2021). Additionally, the function of Zdhhc12,

Gng10, and Arhgef11 has also been associated with cancer pro-

gression (Cardenas-Navia et al., 2010; Du et al., 2020; Lu et al., 2022).

Using the DVR method, we identified 174 GC pairs in the NMR,

involving 126 key genes. GO functional enrichment analysis on these

genes revealed significant enrichment in immunity-related biological

processes such as “Neutrophil mediated immunity” and “Myeloid

cell activation involved in immune response” (Fig. 5C; Table S7). To

further explore the extent of adaptive expression evolution in different

cell types of the NMR, we counted the frequency of each cell type

appearing in the 174 GC pairs (Fig. 5D). The results showed that

myeloid lineage cells contained the most DVR key genes (74.71% of

all key genes), while lymphoid lineage cells and erythroid lineage cells

were associated with much fewer key genes (respectively 15.52%

and 9.77%). Among myeloid lineage cell types, myelocytes and

monocytes contained the most key genes (respectively 45 and 35).

Myeloid lineage cells play a major role in innate immune responses,

with myelocyte being precursors to neutrophils andmonocytes being

precursors to macrophages and dendritic cells, all of which are

important components of the innate immune system (Auffray et al.,

2009; Xie et al., 2020). Thus, our findings suggested a crucial role

of myeloid lineage cells in the adaptation of the NMR immune sys-

tem. A previous study has found significant differences in the cellular

compositions of the immune system between NMR and mice,

characterized by a predominance of myeloid lineage cells and unique

myeloid lineage cell types in NMR, in contrast with the dominance of

the lymphocyte lineage observed in mice (Hilton et al., 2019). They

proposed that the NMR immune system relies heavily on myeloid

lineage cell-mediated innate immunity, consistent with the indication

of our findings. Moreover, reports have indicated that NMR is highly

susceptible to viral infections (Ross-Gillespie et al., 2007; Artwohl
evolution.

nking genes Key genes Flanking key genes P-value

341 28 6 � 10�9

49 6 0.007

190 19 6 � 10�6

25 2 0.65

508 8 0.88

64 5 0.03



Fig. 5. EVaDe analysis on naked mole-rat indicated key genes and cell types related to lineage-specific immune adaptation. A and B: Scatter plots displaying negative correlation

between Dn
sp and Vn

NMR across different cell types within the myeloid (blue), lymphoid (green), and erythroid (red) lineages for 1810065E05Rik (A) and Trappc4 (B). C: GO enrichment

analysis of DVR key genes (N ¼ 126) identified with NMR as focal taxon. Terms with adjusted P < 0.05 are shown. D: Bar plots of DVR key gene numbers associated with each cell type.

The cell types are ranked from the largest associated key gene numbers to the smallest. The inset shows the union numbers of associated key genes across cell types in each cell type

lineage.
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et al., 2009), suggesting that the NMR immune system has evolved

under stronger antibacterial than antiviral selective pressures (Hilton

et al., 2019). Lymphoid lineage cells play a central role in adaptive

immune responses and are the key force in antiviral-specific immune

responses. The relatively weaker antiviral response of NMR is thus

consistent with our finding that the lymphoid lineage contains fewer

key genes than the myeloid lineage. This pattern further suggested a

unique evolutionary path in the immune strategy of NMR, with weaker

selection on antiviral functions than in mouse, possibly resulting from

distinct selection pressures cast by different compositions of path-

ogens in subterranean environment.

Discussion

In this study, we adopted an analysis framework to explore

possible adaptive evolution of gene expression in single cell

expression data. Specifically, after expression variance decompo-

sition (EVaDe) of a gene, large between-taxon expression divergence

and small within-cell-type expression noise were proposed as an

indication of adaptive expression change (DVR strategy). Alterna-

tively, negative correlation between divergence and noise also

looked for the same signal, but focusing on more conserved trends

across multiple cell types (NC strategy). We first found hundreds of

candidate genes in primate PFC showing such divergence-noise

patterns. Functional enrichment analyses and literature research

suggested that these key genes may contribute to the adaptive

evolution of human cognition. We then reported an overall pattern of

positive divergence-noise correlation for most genes, consistent with

a genome-wide neutral evolution scenario under stabilizing con-

straints for gene expression. At the cell-type level, most key genes

displayed large divergence and low levels of noise mostly in
10
excitatory neurons, indicating these cell types may have experienced

more adaptation during human PFC evolution than other types such

as the non-neurons. Furthermore, it is observed that the key genes

coincided with previously annotated rapidly evolving conserved

noncoding elements (RECNEs) in human, orthogonally supporting

their possible adaptation. Finally, the EVaDe framework was applied

to another case study of naked mole-rat bone marrow. Comparing

with mouse, we found candidate genes and myeloid cell types

showing adaptive patterns, consistent with existing evidence of

strong innate immunity in NMR.

In the case studies of both primate PFC and NMR bone marrow,

we observed that the NC strategy and the DVR strategy yield different

results. The NC strategy explicitly considers the expression statistics

(Dn
sp and Vn

taxon) of the same gene across different cell types as a

series of related traits, and directly probes the correlation between

trait divergence and within-taxon trait constraint level. Hence by

requiring that the gene exhibits conserved non-zero expression in

multiple cell types, the NC strategy provides a valid statistical test for

putative adaptation. In this sense, the NC test is relatively conser-

vative, in that not all positive selection leads to such a negative

correlation. Indeed, we observed that the GO terms found by NC

referred to more generic and conserved (yet intriguingly related)

functions in primate PFC, while only six NC key genes were found in

the NMR case. That NC key genes are required to have conserved

expression in multiple cell types of two taxa may also explain why the

NC key genes did not significantly overlap with the RECNEs specific

to human evolution in the primate PFC case, because the regulatory

sequence change may happen earlier, not captured in the RECNE

detection. In contrast, the DVR strategy focuses on individual (gene,

cell type) pairs, allowing cell-type-specific genes to stand out given a

high divergence-noise ratio (Dsp=Vtaxon), even if the gene is only
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expressed in one or two cell types. This explains why we observed

neuron-specific GO terms in primate PFC and myeloid-lineage-

specific GO terms in NMR bone marrow, associated with respec-

tive DVR key genes. Biologically, NC key genes not found in DVR are

likely genes with more constrained and conserved expression, thus

the between-taxon divergence may not be among the largest across

all genes; DVR key genes not found in NC are likely less conserved,

highly diverged genes specifically expressed in a small number of cell

types. A gene found by both NC and DVR would have conserved

expression as well as exhibiting substantially large between-taxon

divergence. Technically, the power of the NC strategy correlation

test is naturally bounded by the number of available cell types, which

explains why many key genes were found in the primate PFC case

(maximally 25 cell types) and much fewer were identified in the NMR

bone marrow case (maximally 10 cell types). Thus, the NC strategy

and the DVR strategy are to some extent different in terms of

candidate gene expression scenarios, and may be simultaneously

applied to achieve a more comprehensive characterization of puta-

tively adaptive expression evolution.

Existing studies have tackled the task of probing evolution modes

in comparative single cell datasets. However, usage of empirical

statistics lacks theoretical justification and is subject to technical

inaccuracy. The previous study by Ma et al. in primate PFC used

Pearson correlations to reflect the expression divergence between

species, and an entropy measurement to reflect expression vari-

ability within a cell population (Ma et al., 2022). A recent study in

primate cerebral cortex used Spearman correlation for between-

species divergence, and average between-individual correlation for

expression variability (Jorstad et al., 2023). Both studies found that

the non-neuron cell types exhibited the largest between-species

expression divergence. However, this may be partially caused by

large expression variability in these cell types as mentioned in the

original text (Ma et al., 2022; Jorstad et al., 2023), and hence cannot

serve as a clear support for adaptive evolution. On the other hand,

differential expression analyses between human and macaque found

more than a thousand differentially expressed genes (DEGs) in many

individual cell types, and non-neurons have the fewest DEGs

compared to neurons, especially excitatory neurons (Jorstad et al.,

2023). Notably, although the human-specific DEGs were enriched

in functional terms such as synapse assembly (Jorstad et al., 2023), it

is unlikely that most of the more than a thousand genes experienced

directional selection during adaptation. Hence, DEG analysis may not

provide definitive evidence for adaptive expression change. In

comparison, our EVaDe framework considers the expression of a

gene in different cell types as related trait series, explicitly separate

expression noises from between-taxon divergence, and tests for

specific Dsp-Vtaxon patterns across cell types, theoretically driven by

adaptive process. We found tens of key genes associated with each

cell type instead of hundreds. Moreover, our findings that excitatory

neurons, especially the deep layer types (e.g. L6 IT-1) were associ-

ated with more key genes and higher Dsp=Vhuman ratios are consis-

tent with the previous DEG results (Jorstad et al., 2023).

Although the EVaDe framework seems analogous to the conven-

tional between- vs. within-species variation comparison, it is essen-

tially different. The within-species expression variation among

individuals should be mainly attributed to neutral genetic variation, so

that it is previously compared to the expression divergence between

species, reflecting whether the possibly neutral genetic variation can

explain this divergence. The assumption in these previous studies has

been yet challenged when there is non-neutral within-species diver-

gence in structured populations. In contrast, instead of using the

within-species expression variation as a reflection of the genetic

variation level, we derive the within-cell-type expression variation as an

estimate of the gene expression noise. This noise estimation reflects

the importance or biological constraints cast on the traits, i.e. the
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expression of the gene in corresponding cell types, by the previously

mentioned prevalent stabilizing selection. No genetic variation be-

tween cells is necessarily invoked in the assumption of this logic.

Hence, the EVaDe framework is theoretically different from the con-

ventional between-versus within-species variation comparison. The

between-cell variation in the single-cell expression data can be subject

to technical noise, rendering the noise comparison between genes

difficult. However, single-cell expression data were previously used for

gene expression noise analyses (Sun and Zhang, 2020). In addition, we

note that in the EVaDe framework, the between-cell expression vari-

ation was compared between cell types for the same gene (NC

strategy), or first used to calculate the Dsp=Vtaxon ratio before cross-

gene comparison (DVR strategy). This should diminish the impact of

gene-specific technical noise in single-cell RNA sequencing. Besides,

shuffling control results validated the power of our analysis on the real

data. Another possible test under the EVaDe framework is to conduct

F test for the Dsp=Vtaxon ratios, similar to the ANOVA test. However,

although providing statistical significance, F test may only describe the

observation of significant expression divergence between species, but

were not to pick up the top key genes under adaptation. Thus, F test

may result in thousands of significant genes in each cell type analo-

gous to the DEG analysis in previous studies. In this sense, we decided

not to rely on the F test in our DVR analysis.

The analyses of evolution modes for gene expression as a

phenotype have suffered from technical biases and lack of theoret-

ical models. Single cell expression data provide the opportunity to

overcome the composition biases across different taxa. However,

comparative single cell datasets are also subject to analysis diffi-

culties such as cross-species integration and cell type annotation

(Price et al., 2022). In our analysis, we used the expression profile

matrices and cell type assignments of the original studies, circum-

venting the problems assuming the published annotations are cor-

rect. It is possible that different data integration pipelines or different

cell clustering resolutions may affect the EVaDe results. Although we

have shown that the analysis results are largely consistent under

different expression level cutoffs, further validation may provide more

information about the potential impact of technical details on the

results. Besides, we reckon that the current EVaDe framework serves

mostly as a proof of concept, demonstrating the feasibility of

applying evolutionary framework to single cell expression data. The

detailed parameters in the analyses may well benefit from case-

specific adjustment, such as the arbitrary rank cutoff of Dsp=Vhuman

ratio and Dsam=Vhuman ratio in the DVR strategy. Furthermore, our

framework is currently proposed for comparison between a pair of

taxa, with the potential to be extended to multiple taxa in a phylog-

eny. To realize this extension, existing phylogeny-aware models of

expression changes need to be integrated (Yang et al., 2019; Bertram

et al., 2023). As applications of single cell RNA sequencing have been

accumulating rapidly in comparative studies of non-model organ-

isms, it would be of increasing importance to consolidate a valid

analysis framework of evolution modes for such types of data.

Materials and methods

Single cell data acquisition and preprocessing

Single-cell RNA-seq data for human and macaque prefrontal

cortex (PFC) were obtained as a preprocessed Seurat object from the

online data of a published study (Ma et al., 2022) (https://sestanlab-

public-data.s3.amazonaws.com/Primate_PFC_Ma_2022/PFC_

snRNAseq_liftover.zip). The dataset comprised four human samples

and four macaque samples, with 29 orthologous cell types and

28,216 orthologous genes annotated. Gene expression counts within

each cell were then normalized using the NormalizeData function

(scaling factor ¼ 10,000) in the R package Seurat (version 4.1.1) (Hao

https://sestanlab-public-data.s3.amazonaws.com/Primate_PFC_Ma_2022/PFC_snRNAseq_liftover.zip
https://sestanlab-public-data.s3.amazonaws.com/Primate_PFC_Ma_2022/PFC_snRNAseq_liftover.zip
https://sestanlab-public-data.s3.amazonaws.com/Primate_PFC_Ma_2022/PFC_snRNAseq_liftover.zip
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et al., 2021). To ensure sufficient representation of each cell type, we

set a cell count threshold of 1800 cells per type. Cell types with fewer

than 1800 cells were removed, and for the remaining cell types,

1800 cells were randomly sampled. We down-sampled to an equal

number of cells for each defined cell type to avoid biases due to

varying cell counts. The cell number threshold 1800 was chosen

considering a trade-off between reserving more cell types for

downstream analyses and retaining more cells for each type after

down-sampling, as all four removed cell types contained less than

650 cells. This resulted in a final dataset of 45,000 cells across 25 cell

types, including Layer 2e3 intratelencephalic (L2e3 IT), Layer 3e5

intratelencephalic 1 (L3e5 IT-1), Layer 3e5 intratelencephalic 2

(L3e5 IT-2), Layer 3e5 intratelencephalic 3 (L3e5 IT-3), Layer 5e6

near-projecting (L5e6 NP), Layer 6 corticothalamic (L6 CT), Layer 6

intratelencephalic 1 (L6 IT-1), Layer 6 intratelencephalic 2 (L6 IT-2),

Layer 6B (L6B), LAMP5 LHX6, LAMP5 RELN, VIP, ADARB2 KCNG1,

SST, PVALB, PVALB chandelier cell (PVALB ChC), astrocyte (Astro),

microglia (Micro), oligodendrocyte (Oligo), oligodendrocyte precur-

sor cell (OPC), endothelial cell (Endo), immune cell (Immune), pericyte

(PC), smooth muscle cells (SMC), vascular leptomeningeal cells

(VLMC). Cell type names without brackets were assigned according

to the marker genes in the original study. In the human versus

chimpanzee analysis, we followed the same data preprocessing

steps, obtaining 40,000 cells belonging to 25 cell types, i.e.,

1600 cells per type, for downstream analyses.

Single-cell RNA-seq data for NMR and mouse bone marrow were

obtained from Gene Expression Omnibus (GEO), under accession

code GSE214390 (Lin et al., 2024). The NMR dataset contained 19 cell

types across four samples, each with two technical replicates, totaling

51,708 genes annotated with Ensembl or Entrez Gene IDs. The mouse

dataset included 16 cell types across four samples, also with two

technical replicates per sample, containing 49,671 genes annotated by

Ensembl gene IDs. A Seurat object was constructed for each replicate

by reading the original data files (matrix.mtx.gz, barcodes.tsv.gz,

genes.tsv.gz). To assess the reproducibility of technical replicates,

principal component analysis (PCA) and Uniform Manifold Approxi-

mation and Projection (UMAP) of the gene expression matrix were

performed using Seurat (version 4.1.1) simultaneously on a matrix

merging the two replicates of each sample. We visually inspected the

UMAP visualizations to confirm that cells from the two replicates of

each sample clearly clustered by cell types and overlapped within

each cell cluster, thus containing little technical bias. Hence, we

combined all cells from the two technical replicates for each sample

into a single dataset. Orthologous genes between NMR and mouse

(N ¼ 15,168) were identified by integrating a previously established

ortholog list (Hilton et al., 2019) and cross-referencing between

Ensembl and Entrez Gene IDs, followed by further gene symbol

mapping. Gene expression counts within each cell were normalized

using the NormalizeData function (scaling factor ¼ 10,000) in Seurat.

Focusing on shared cell types between the two species and applying a

cell number threshold of 3000 per cell type, 10 cell types were retained

for downstream analyses, resulting in a total of 30,000 cells.
ANOVA analysis to decompose the expression variance

We decomposed the expression variance into different compo-

nents to quantify gene expression divergence and noise between two

evolutionarily diverged taxa (species or populations) at the single-cell

level as follows. We started from the preprocessed single-cell gene

expression matrix merged from those of the two individual taxa, and

labeled each cell with its respective taxon and sample origin. Then, a

two-way Analysis of Variance (ANOVA) by the aov(.) function in R

(version 4.1.3) was conducted using the following model.

Gene Expression ~ Taxon þ Sample (nested within Taxon)
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Here, the normalized gene expression levels served as the

dependent variable. Taxon (e.g., human or macaque) was the first

independent variable, while Sample, nested within Taxon, served as

the second independent variable to account for gene expression

variation due to differences between individual samples within the

same taxon. We extracted the Mean Square (MS) values from the

ANOVA output as the metric for assessing the magnitude of

expression variation attributed to different levels. The MS normalizes

the sum of squares by the degrees of freedom, providing a variance

estimate that is adjusted for sample sizes and is thus more compa-

rable across datasets. Consequently, we derived the variance of

gene expression across cells into inter-taxon divergence (Dsp), inter-

sample variation within taxon (Dsam), and the residuals (among-cell

variance within samples, Vtaxa). To specifically characterize gene

expression noise within the focal taxon, we performed a separate

one-way ANOVA for each taxon using the following model:

Gene Expression ~ Sample

The normalized gene expression level served as the dependent

variable and the Sample labels served as the independent variable.

This allowed us to isolate the inter-sample variation within the focal

taxon (D0
sam) and the residual cell-to-cell variance within the focal

taxon (Vtaxon).

The NC strategy

For each gene within each cell population (hereby denoted a cell

type), we obtained the Dsp, Dsam, and Vtaxon values as described

above. These values were then normalized by the mean expression

level (mean log-normalized counts across cells, Exptaxon) of the

corresponding gene within the focal taxon’s cell type: Dn
sp ¼

Dsp=Exptaxon, D
n
sam ¼ Dsam=Exptaxon, and Vn

taxon ¼ Vtaxon=Exptaxon.

Genes with non-zero Dsp, Vtaxon, and Exptaxon values in at least five

cell types were retained for downstream analyses, to ensure

reasonable statistical power on correlation tests. For these genes, we

performed linear regression analysis using the stats.linregress func-

tion in the scipy Python package on the Dn
sp, D

n
sam, and Vn

taxon values

across the relevant cell types. This yielded three Pearson correlation

coefficients (r values) and associated P values for each of the

following pairs: Dn
sp ~ Vn

taxon, D
n
sp ~ Dn

sam, and Dn
sam ~ Vn

taxon. P values

were further adjusted as Q values using the Benjamini-Hochberg

method for multiple test correction. We first selected genes that

showed a significant negative Dn
sp ~ Vn

taxon correlation (Q < 0.05). To

reduce the probability that the negative Dn
sp ~ Vn

taxon correlation is

stochastic with no biological significance, we further excluded genes

with significant positive Dn
sp ~ Dn

sam correlation (Q < 0.05) and genes

with significant negative Dn
sam ~ Vn

taxon correlation (Q < 0.05). The

remaining genes were denoted as NC key genes.

The DVR strategy

In the DVR strategy, we looked for putatively adaptive gene

expression patterns in specific cell types, hence focusing on (gene,

cell type) pairs, or GC pairs. GC pairs with extremely low mean

expression level (Exptaxon < 0.01) and GC pairs with zero Dsp or Vtaxon

values were excluded, to enable Dsp=Vtaxon ratio calculation and

avoid stochastic outlier values with no biological significance. For the

remaining pairs, we calculated the ratios of Dsp to Vtaxon and Dsam to

Vtaxon. Based on these two ratios, the cell type pairs are then ranked

from highest to lowest respectively. To identify GC pairs with high

between-taxon expression divergence and low within-cell-type

noise, while minimizing the impact of stochasticity reflected by

between-sample variance, we employed a two-step selection pro-

cess. First, a specific threshold is set to select GC pairs with a high

Dsp=Vtaxon rank. Then, a second threshold was applied to filter out
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GC pairs with a high Dsam=Vtaxon rank. The remaining GC pairs were

denoted as DVR key GC pairs, and genes involved in these GC pairs

were denoted as DVR key genes. Specifically, for the human-

macaque PFC case, we empirically selected GC pairs whose Dsp=

Vtaxon rank was in the top 0.5%, and simultaneously required the

Dsam=Vtaxon rank was not in the top 5%. For the NMR-mouse bone

marrow case, we selected GC pairs whoseDsp=Vtaxon rank was in the

top 1%, and simultaneously required the Dsam=Vtaxon rank was not in

the top 5%. These percentage cutoffs were set to maintain a

reasonable number of top-ranked genes for downstream functional

enrichment analysis.
Gene Ontology (GO) enrichment analysis

GO enrichment analysis was performed using the enrichGO

function in the R package “clusterProfiler” (version 4.0.5) (Yu et al.,

2012). Different background gene sets were used depending on

the specific analysis scenarios. For the NC method, the background

gene set contained all genes with non-zero Dsp, Vtaxon, and Exptaxon
values in at least five cell types. For the DVRmethod, the background

gene set consisted of genes with Exptaxon above 0.01 (or 0.2 when

explicitly mentioned in the main text), and with non-zero Dsp and

Vtaxon values in at least one cell type. The Benjamini-Hochberg

method was used to control the false discovery rate (FDR), and a Q

value < 0.05 was considered statistically significant.
Validation analyses for the human PFC findings

For key GC pairs identified by the DVR strategy, the expression

levels of each gene within its corresponding cell types were obtained

to represent DVR gene expression levels in Fig. S3A and S3B. For

each key gene identified by the NC method, the Dsp= Vtaxon ratios

were calculated across all cell types with Exptaxon > 0.01. The cell

type with the maximum ratio was selected, and the mean expression

within that cell type was obtained for the key gene. These expression

levels were then collected for all NC key genes to represent NC gene

expression levels in Fig. S3A and S3B. For comparison, the

expression levels of all genes were also evaluated. For each gene,

the Dsp=Vtaxon ratios were calculated across all cell types with

Exptaxon > 0.01. The cell type with the maximum ratio was selected,

and the mean expression within that cell type was obtained for the

gene. These expression levels were then collected for all genes to

represent all gene expression levels in Fig. S3A and S3B. Pairwise t-

tests were performed between NC genes, DVR genes, and all genes

using the Python function “scipy.stats.ttest_ind”.

The cutoff of 0.2 for defining genes with high expression level was

set arbitrarily to exclude relatively lowly expressed genes potentially

with larger stochastic expression divergence or noise.

For the EVE model analysis, we first pooled the expression levels

across all 45,000 cells together, did normalization as described

above, and then conducted the betaSharedTest in the R package

evemodel (https://gitlab.com/sandve-lab/evemodel/). Likelihood ra-

tio test P values were derived according to the output likelihood ratio

statistics.

For the PGLS analysis, we first calculated the mean expression

level of each gene in each cell type, and then derived a correlation

distance matrix by calculating one minus the expression profile

Pearson correlation between all pairs of cell types. The distance

matrix was used to reconstruct a Neighbor-Joining tree of the cell

types, based on the as.phylo function in the R package APE v5.8-1

(Paradis and Schliep, 2019). Next, PGLS was conducted by the R

package caper v1.0.3. The key genes were identified as those

showing significant negative Dn
sp ~ Vn

taxon regression coefficient

(Q < 0.05) with no significant positive Dn
sp ~ Dn

sam regression
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coefficient and no significant negative Dn
sam ~ Vn

taxon regression co-

efficient (Q < 0.05).

For the shuffling control, we shuffled the sample labels randomly

among all cells in each cell type, so that each sample after shuffling

contained the same number of cells as in the real data. The NC and

DVR analyses were then conducted.

Genome-wide analysis of Dn
sp-V

n
taxon and Dn

sam-Vn
taxon

correlations in human PFC

For each cell type, the mean Dn
sp was calculated by summing the

Dn
sp for each analyzed gene and dividing the sum by the number of

expressed genes (Exphuman > 0) within that cell type. Mean Dn
sam and

mean Vn
human were calculated likewise. Spearman and Pearson cor-

relation coefficients were computed using the spearmanr and pear-

sonr functions, respectively, from the “scipy.stats”module in Python.

Two sets of genes were analyzed. The first set consisted of

12,639 genes exhibiting conserved expression across all PFC cell

types, defined as showing Exphuman > 0 in all 25 cell types. This set

was used in Fig. 3. The second set comprised 25,073 genes

expressed in at least one cell type, defined as having Exphuman > 0 in

any of the 25 cell types. This set was used in Fig. S4.

Cell types ranking by Dn
sp or Vn

human in human PFC

For each key gene identified by the NC method, the 25 cell types

were ranked based on their Dn
sp values in ascending order. Cell types

with missing Dn
sp values were assigned 0. The ranked cell types were

then assigned values of ’00, ’10, or ’20 corresponding to their classi-

fication as excitatory neurons (ExN), inhibitory neurons (InN), or non-

neuron cells, respectively. Heatmaps in Fig. 4C were generated using

Seaborn (version 0.11.2) (Waskom, 2021), with rows clustered. A

separate heatmap was generated for the 25 cell types ranked ac-

cording to their Vn
human values, also in ascending order. Cell types

with missing Vn
human values were assigned the value 100,000. Across

all 25 cell types � 575 key genes in Fig. 4C, there were only 30

missing values in 23 genes, causing little impact on the figure

patterns.

For each gene in the genome, cell types with Exphuman > 0 were

selected. If the number of such cell types n was greater than five,

these cell types were ranked according to their Dn
sp values. The rank

indices were normalized by dividing the actual rank value by n-1,

deriving the final relative Dn
sp ranks of each cell type. For each of the

25 cell types, the relative Dn
sp rank values of all genes within the cell

type were aggregated to form the box plots in Fig. 4D, using the

Python module “matplotlib.pyplot”. The same procedure was

applied to generate box plots of relative Vn
human rank values in Fig. 4E.

Nearest genes to human rapidly evolving non-coding elements

(RECNEs)

To obtain the nearest genes to human RECNEs, we first down-

loaded the genome position data of RECNEs from a previous study

(Shao et al., 2023), which was based on the human genome refer-

ence annotation (Homo sapiens hg38, Ensembl v100). Next, we

retrieved the coding sequence (CDS) position information for all

protein-coding genes and gene position information for all lncRNA

genes from the Ensembl v100 annotations. Then, using the bedtools

(version 2.30.0) intersect command (Quinlan and Hall, 2010), we

searched for the protein-coding genes and lncRNA genes within a

100 kb window upstream and downstream of each RECNE, and

identified the nearest ones by in-house script. Subsequently, we

converted the annotations of these nearest genes using the GTF

https://gitlab.com/sandve-lab/evemodel/
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format annotation file for GENCODE human genome v28, and iden-

tified intersections between these nearest protein-coding or lncRNA

genes and the key genes found in EVaDe analyses. A hypergeometric

test (Python scipy.stats module) was used to assess the significance

of the intersections.

Data and code availability

All data sources needed to evaluate the conclusions in the paper

are present in the paper and the Supplementary Materials. Source

codes for all essential analyses are available at https://github.com/

qin-proj/EVaDe. The initial expression matrices and other essential

data are available at https://figshare.com/s/5ea408815fa30b2764e1.

Additional data and scripts related to this paper may be requested

from the authors.
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